South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 81-98

DOI: 10.56827/SEAJMMS.2024.2001.7 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

UNICITY THEOREMS CONCERNING A L-FUNCTION AND A MEROMORPHIC FUNCTION

Harina P. Waghamore and Preetham N. Raj

Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru - 560056, Karnataka, INDIA

E-mail: harinapw@gmail.com, preethamnraj@gmail.com

(Received: Dec. 27, 2023 Accepted: Mar. 30, 2024 Published: Apr. 30, 2024)

Abstract: Inspired by a lot of studies on the uniqueness results of a L-function with a meromorphic function, in this article, we examine the uniqueness of two differential polynomials, one generated by a meromorphic function with finitely many poles and another by a L-function, when they share two values with some weight. The results of our examination extend, generalize as well as improve the results of Hao and Chen [2, 3].

Keywords and Phrases: L-function, linear differential polynomial, sharing values, finite weight, Nevanlinna theory.

2020 Mathematics Subject Classification: 30D35.

1. Introduction

Let \mathbb{C} represent the complex plane, \mathbb{N} represent the set of natural numbers, $\mathbb{W} = \mathbb{N} \cup \{0\}, \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}, \underline{\mathbb{C}} = \mathbb{C} \setminus \{0\}.$

We assume that the readers are well aware of the standard notations and definitions used in the Nevanlinna value distribution theory such as T(r, f), m(r, f), N(r, f), $\overline{N}(r, f)$ etc. The reader can refer ([4], [15], [16]) for basics of Nevanlinna theory.

Let $\mathscr{F} = \{f(z)|f(z) \text{ is a non-constant meromorphic function in } \mathbb{C}\}$ and let $\mathscr{G} = \{g(z)|g(z) \text{ is a non-constant meromorphic function } \mathbb{C} \text{ with finitely many poles}\}.$ For $f_1, f_2 \in \mathscr{F} \text{ and } b \in \overline{\mathbb{C}}$, if $f_1 - b$ and $f_2 - b$ have identical zeros taking into account

the multiplicities then we say, $f_1(z)$ and $f_2(z)$ share b CM (counting multiplicities), if multiplicities are not taken into account then we say $f_1(z)$ and $f_2(z)$ share b IM (ignoring multiplicities).

In general for $f \in \mathscr{F}$, m(r,f) denotes the proximity function of f, N(r,f) denotes the counting function of poles of f(z), whose multiplicities are taken into account (respectively $\overline{N}(r,f)$ denotes the reduced counting function when multiplicities are ignored). N(r,b;f) (notation inter-changable with $N\left(r,\frac{1}{f-b}\right)$) denotes the counting function of b-points of f(z), whose multiplicities are taken into account (respectively $\overline{N}(r,b;f)$ denotes the reduced counting function when multiplicities are neglected). T(r,f) represents the characteristic function of f. S(r,f) denotes any quantity satisfying S(r,f) = o(T(r,f)) as $r \to \infty$ outside a possible exceptional set of finite linear measure. A meromorphic function $\eta(z)$ is said to be a small function of f, if $T(r,\eta) = S(r,f)$.

Below we give some definitions which are required for our paper.

Definition 1.1. [5, 6] Let $f_1, f_2 \in \mathscr{F}$ and $p \in \mathbb{W} \cup \{\infty\}$. For $b \in \overline{\mathbb{C}}$, we represent by $\mathbb{E}_p(b; f_1)$ the set of all zeros of $f_1 - b$ where a zero of multiplicity s is counted s times if $s \leq p$ and p + 1 times if s > p. If $\mathbb{E}_p(b; f_1) = \mathbb{E}_p(b; f_2)$, we say that f_1, f_2 share b with weight p.

Definition 1.2. [5] Let $q \in \mathbb{W}$ and $f_1 \in \mathcal{F}$, then we set $N_q(r, b; f_1)$ as the counting function of b-points of f_1 , where any m multiplicity b-point of f_1 is counted m times if $m \leq q$ and q times if m > q.

Definition 1.3. [5] Suppose f_1 and f_2 share the value b IM. Then we set $\overline{N}_*(r, b; f_1, f_2)$ as the reduced counting function of those b-points of f_1 whose multiplicities differ from the multiplicities of the corresponding b-points of f_2 .

In modern number theory, L-functions play a very important role. The value distributions of the L-functions provides valuable insights into the algebraic structure that is not available through the use of the elementary algebraic techniques. Specifically, the distribution of zeros of L-functions holds particular significance for numerous multiplicative number theory problems. One illustration is the Riemann hypothesis in the right half of the critical strip for a non-vanishing Riemann zeta-function and its impact on the distribution of prime numbers.

One feature all L-functions have in common is that they can be described by an Euler product. Therefore all L-function can be described as a product taken over prime numbers. Taking into account unique prime factorization of integers we can express L-functions as Dirichlet series. We may regard the well-known Riemann zeta-function as the prototype, i.e., $\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} = \prod_p \left(1 - \frac{1}{p^z}\right)^{-1}$,

where z = x + iy, x > 1 and p stands for a prime integer and the product is taken over all prime numbers.

Towards the end of twentieth century, in an effort to summarize the core properties of classical L-functions, Selberg [12] gave an axiomatic characterization of what would be called general L-functions. A L-function \mathcal{L} means a Selberg class function with the Riemann zeta function $\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$ as the prototype and the Selberg class \mathcal{S} of L-function is defined as follows:

Definition 1.4. [12] The Selberg class S consists of the functions L satisfying the following axioms:

- 1. (Dirichlet series) $\mathcal{L}(z) = \sum_{n=1}^{\infty} \frac{a(n)}{n^z}$, absolutely convergent for $\sigma > 1$.
- 2. (Analytic continuation) There exists an integer m such that $(z-1)^m \mathcal{L}(z)$ is an entire function of finite order.
- 3. (Functional equation) There exist an integer $r \geq 0$, positive real numbers Q, λ_j , complex numbers μ_j with $Re \mu_j \geq 0$ and ω with $|\omega| = 1$, such that the function $\Lambda(z)$ defined by

$$\Lambda(z) = Q^z \prod_{j=1}^r \Gamma(\lambda_j z + \mu_j) \mathcal{L}(z) = \gamma(z) \mathcal{L}(z),$$

satisfies the functional equation $\Lambda(z) = \omega \overline{\Lambda}(1-z)$. We would call the function $\gamma(z)$ the γ -factor.

- 4. (Ramanujan conjecture) For every $\epsilon > 0$, $a(n) = O(n^{\epsilon})$.
- 5. (Euler product) a(1) = 1, and $\log \mathcal{L}(z) = \sum_{n \geq 1} \frac{b(n)}{n^z}$, where b(n) = 0 unless n is a prime power, and $b(n) \ll n^{\theta}$ for some $\theta < \frac{1}{2}$.

By the comment on the order of a function, we can choose m in axiom (2) to be the order of the pole of \mathcal{L} at z=1.

Since L-functions are analytically continued as meromorphic functions, we can study the value distribution and uniqueness results for a L-function, similar to any arbitrary meromorphic function using the Nevanlinna value distribution theory and the fact that L-functions has the only pole at z=1 helps us in this.

So, by utilizing this fact in 2017, Liu et. al [8] studied the uniqueness results of a differential polynomial of a *L*-function with the same of a meromorphic function sharing a non-zero finite value and obtained the following result.

Theorem A. [8] Let $f \in \mathscr{F}$ and \mathscr{L} be a L-function. Let $n, l \in \mathbb{N}$ such that n > 3l + 6. Suppose that $[f^n]^{(l)}$ and $[\mathscr{L}^n]^{(l)}$ share 1 CM, then $f \equiv t\mathscr{L}$ for a constant t satisfying $t^n = 1$.

In 2018, Hao and Chen [2] generalized the differential monomial of Liu et. al [8], as well as reduced the sharing value from CM to IM and obtained the following results.

Theorem B. [2] Let $f \in \mathcal{G}$ and \mathcal{L} be a L-function. Let $n, m, l \in \mathbb{N}$. Suppose that $[f^n(f-1)^m]^{(l)}$ and $[\mathcal{L}^n(\mathcal{L}-1)^m]^{(l)}$ share 1 IM. If n > 7l + 4m + 11, $l \geq 2$, then $f \equiv \mathcal{L}$ or $f^n(f-1)^m \equiv \mathcal{L}^n(\mathcal{L}-1)^m$.

Theorem C. [2] Let $f \in \mathcal{G}$ and \mathcal{L} be a L-function. Let $n, l \in \mathbb{N}$. Suppose that $[f^n]^{(l)}$ and $[\mathcal{L}^n]^{(l)}$ share 1 IM. If n > 7l + 11, then $f \equiv t\mathcal{L}$ for a constant t satisfying $t^n = 1$.

Once again in 2018, Hao and Chen [3], studied the uniqueness result of a L-function with an arbitrary meromorphic function as follows.

Theorem D. [3] Let \mathcal{L} be a L-function and $f \in \mathcal{G}$. Let $\alpha_1, \alpha_2 \in \mathbb{C}$ and $\kappa_1, \kappa_2 \in \mathbb{N}$ satisfying $\kappa_1 \kappa_2 > 1$. If $\mathbb{E}_{\kappa_i}(\alpha_i, \mathcal{L}) = \mathbb{E}_{\kappa_i}(\alpha_i, f)$, for i = 1, 2, then $\mathcal{L} \equiv f$. The main motivation to this paper are the following questions,

- (i) whether we can reduce the condition for n in Theorem B and C?
- (ii) whether we can reduce the weights of sharing κ_1, κ_2 in Theorem D?
- (iii) whether a similar uniqueness result holds when we consider, an additional linear differential polynomial along with the polynomial of \mathcal{L} as defined below?

Definition 1.5. Let $f \in \mathscr{F}$. Then we define its linear differential polynomial $d_{\kappa}[f]$ as

$$d_{\kappa}[\mathbf{f}] = a_0 \mathbf{f} + a_1 \mathbf{f}' + a_2 \mathbf{f}'' + \dots + a_{\kappa} \mathbf{f}^{(\kappa)}, \tag{1.1}$$

where $a_0, a_1, a_2, ..., a_{\kappa-1}$ and $a_{\kappa} \neq 0$ are complex constants.

2. Main Results

As a positive answer to the above questions, we give the following results.

Theorem 2.1. Let \mathcal{L} be a L-function and $f \in \mathcal{G}$. Let $F^* = (f^n(f-1)^m d_{\kappa}[f])^{(l)}$ and $\mathcal{L}^* = (\mathcal{L}^n(\mathcal{L}-1)^m d_{\kappa}[\mathcal{L}])^{(l)}$. Let $a_1 = 1, a_2 = \infty$ and $\kappa_1, \kappa_2 \in \mathbb{W} \cup \{\infty\}$. If $\mathbb{E}_{\kappa_1}(a_1, \mathcal{L}^*) = \mathbb{E}_{\kappa_1}(a_1, F^*)$ and $\mathbb{E}_{\kappa_2}(a_2, \mathcal{L}^*) = \mathbb{E}_{\kappa_2}(a_2, F^*)$, such that

- (i) $n > \kappa + 2l + m + 5$, when $\kappa_1 \ge 2$ and $0 \le \kappa_2 \le \infty$ or,
- (ii) $n > \kappa + \frac{5l+3m+13}{2}$, when $\kappa_1 = 1$ and $\kappa_2 = 0$ or,

(iii)
$$n > \kappa + 5l + 4m + 11$$
, when $\kappa_1 = 0$ and $\kappa_2 = 0$,

then we have $f^n(f-1)^m d_{\kappa}[f] \equiv \mathcal{L}^n(\mathcal{L}-1)^m d_{\kappa}[\mathcal{L}]$. Further, if $\kappa = 0$, then we have one of the following conclusions

- (i) $f \equiv t\mathcal{L}$, for a constant t satisfying $t^d = 1$, where d = GCD(n + m + 1, n + m, n + m 1, ..., n + 1).
- (ii) f and \mathcal{L} satisfy the algebraic equation $R(f,\mathcal{L}) = 0$, where

$$R(\omega_1, \omega_2) = \omega_1^{n+1}(z)(\omega_1(z) - 1)^m - \omega_2^{n+1}(z)(\omega_2(z) - 1)^m.$$

Example. Let $f = \frac{1}{z-1} + 1$ and $\mathcal{L} = \sum_{n=1}^{\infty} \frac{1}{n^z} + 1$. Then it is easy to see that f and \mathcal{L} share the values 1 and ∞ CM. Suppose l = 0, m = 0 and $\kappa = 0$, then again F^* and \mathcal{L}^* shares 1 and ∞ CM, but none of the conclusions of Theorem 2.1 holds, which shows that the conditions given in the theorem are necessary, but not sufficient.

Corollary 2.1. Let \mathcal{L} be a L-function and $f \in \mathcal{G}$. Let $F^* = (f^n d_{\kappa}[f])^{(l)}$ and $\mathcal{L}^* = (\mathcal{L}^n d_{\kappa}[\mathcal{L}])^{(l)}$. Let $a_1 = 1, a_2 = \infty$ and $\kappa_1, \kappa_2 \in \mathbb{W} \cup \{\infty\}$. If $\mathbb{E}_{\kappa_1}(a_1, \mathcal{L}^*) = \mathbb{E}_{\kappa_1}(a_1, F^*)$ and $\mathbb{E}_{\kappa_2}(a_2, \mathcal{L}^*) = \mathbb{E}_{\kappa_2}(a_2, F^*)$, such that

- (i) $n > \kappa + 2l + 5$, when $\kappa_1 \ge 2$ and $0 \le \kappa_2 \le \infty$ or,
- (ii) $n > \kappa + \frac{5l+13}{2}$, when $\kappa_1 = 1$ and $\kappa_2 = 0$ or,
- (iii) $n > \kappa + 5l + 11$, when $\kappa_1 = 0$ and $\kappa_2 = 0$,

then we have $f^n d_{\kappa}[f] \equiv \mathcal{L}^n d_{\kappa}[\mathcal{L}]$. Further, if $\kappa = 0$, then we have $f \equiv s\mathcal{L}$, for a constant s satisfying $s^{n+1} = 1$.

Theorem 2.2. Let \mathcal{L} be a L-function and $f \in \mathcal{G}$. Let $F^* = (f^n(f-1)^m)^{(l)}$ and $\mathcal{L}^* = (\mathcal{L}^n(\mathcal{L}-1)^m)^{(l)}$. Let $a_1 = 1, a_2 = \infty$ and $\kappa_1, \kappa_2 \in \mathbb{W} \cup \{\infty\}$. If $\mathbb{E}_{\kappa_1}(a_1, \mathcal{L}^*) = \mathbb{E}_{\kappa_2}(a_1, F^*)$ and $\mathbb{E}_{\kappa_2}(a_2, \mathcal{L}^*) = \mathbb{E}_{\kappa_2}(a_2, F^*)$, such that

- (i) n > 2l + m + 4, when $\kappa_1 \ge 2$ and $0 \le \kappa_2 \le \infty$ or,
- (ii) $n > \frac{5l+3m+9}{2}$, when $\kappa_1 = 1$ and $\kappa_2 = 0$ or,
- (iii) $n > \kappa + 5l + 4m + 7$, when $\kappa_1 = 0$ and $\kappa_2 = 0$,

then we have one of the following conclusions

(i) $f \equiv t\mathcal{L}$, for a constant t satisfying $t^d = 1$, where d = GCD(n + m, n + m - 1, n + m - 2, ..., n).

(ii) f and \mathcal{L} satisfy the algebraic equation $R(f, \mathcal{L}) = 0$, where

$$R(\omega_1, \omega_2) = \omega_1^n(z)(\omega_1(z) - 1)^m - \omega_2^n(z)(\omega_2(z) - 1)^m.$$

Corollary 2.2. Let \mathcal{L} be a L-function and $f \in \mathcal{G}$. Let $a_1 = 1, a_2 = \infty$ and $\kappa_1, \kappa_2 \in \mathbb{W} \cup \{\infty\}$. If $\mathbb{E}_{\kappa_1}(a_1, [\mathcal{L}^n]^{(l)}) = \mathbb{E}_{\kappa_1}(a_1, [f^n]^{(l)})$ and $\mathbb{E}_{\kappa_2}(a_2, [\mathcal{L}^n]^{(l)}) = \mathbb{E}_{\kappa_2}(a_2[f^n]^{(l)})$, such that

- (i) n > 2l + 4, when $\kappa_1 \ge 2$ and $0 \le \kappa_2 \le \infty$ or,
- (ii) $n > \frac{5l+9}{2}$, when $\kappa_1 = 1$ and $\kappa_2 = 0$ or,
- (iii) $n > \kappa + 5l + 7$, when $\kappa_1 = 0$ and $\kappa_2 = 0$,

then we have one $f \equiv t\mathcal{L}$, for a constant t satisfying $t^n = 1$.

Remarks. By additionally considering that the differential polynomials of f and \mathcal{L} share ∞ with weight κ_2 we have obtained Theorems 2.1, 2.2 and Corollaries 2.1, 2.2. We can see that Theorem 2.2 and Corollary 2.2 are improvements of the Theorem B and C respectively, where as Theorem 2.1 and Corollary 2.1 are generalization as well as improvements of Theorem D.

3. Lemmas

Here we provide all the lemmas which we will be using. Let $\mathscr{F} = \{f(z)|f(z) \text{ is a non-constant meromorphic function in } \mathbb{C}\}$. For any $f_1, f_2 \in \mathscr{F}$, let Ω be defined as:

$$\Omega \equiv \left(\frac{f_1''}{f_1'} - \frac{2f_1'}{f_1 - 1}\right) - \left(\frac{f_2''}{f_2'} - \frac{2f_2'}{f_2 - 1}\right). \tag{3.1}$$

Lemma 3.1. [15] Let $f \in \mathscr{F}$ and $n \in \mathbb{N}$. Let $\mathscr{P}_n(f) = a_n f^n + a_{n-1} f^{n-1} + \cdots + a_1 f$, where a_{κ} for $\kappa = 1, 2, ..., n$ are meromorphic functions such that $T(r, a_{\kappa}) = S(r, f)$ for $\kappa = 1, 2, ..., n$ and $a_{\kappa} \not\equiv 0$. Then

$$T(r, \mathscr{P}_n(\mathsf{f})) = nT(r, \mathsf{f}) + S(r, \mathsf{f}).$$

Lemma 3.2. [17] Let $f_1, f_2 \in \mathscr{F}$ and $a(z) (\not\equiv 0, \infty)$ be a small function of f_1 and f_2 . Suppose f_1 and f_2 share a(z) IM, then one of the following three cases holds:

(i)

$$T(r, \mathsf{f}_1) \leq N_2(r, 0; \mathsf{f}_1) + N_2(r, \infty; \mathsf{f}_1) + N_2(r, 0; \mathsf{f}_2) + N_2(r, \infty; \mathsf{f}_2) + 2(\overline{N}(r, 0; \mathsf{f}_1) + \overline{N}(r, \infty; \mathsf{f}_1)) + \overline{N}(r, 0; \mathsf{f}_2) + \overline{N}(r, \infty; \mathsf{f}_2) + S(r, \mathsf{f}_1) + S(r, \mathsf{f}_2),$$

and a similar inequality holds for $T(r, f_2)$,

(ii) $f_1f_2 \equiv 1$,

(iii)
$$f_1 \equiv f_2$$
.

Lemma 3.3. [7] Let $f \in \mathscr{F}$ and $\kappa, q \in \mathbb{N}$. Then

$$N_q(r, 0; \mathsf{f}^{(\kappa)}) \le T(r, \mathsf{f}^{(\kappa)}) - T(r, \mathsf{f}) + N_{\kappa+q}(r, 0; \mathsf{f}) + S(r, \mathsf{f}),$$

and

$$N_q(r, 0; \mathsf{f}^{(\kappa)}) \le N_{\kappa+q}(r, 0; \mathsf{f}) + \kappa \overline{N}(r, \infty; \mathsf{f}) + S(r, \mathsf{f}).$$

Lemma 3.4. [1] Let $f_1, f_2 \in \mathscr{F}$. Suppose f_1 , f_2 share (1,2) and (∞, κ) , where $0 \le \kappa \le \infty$ and $\Omega \not\equiv 0$. Then

$$T(r, \mathsf{f}_1) \le N_2(r, 0; \mathsf{f}_1) + N_2(r, 0; \mathsf{f}_2) + \overline{N}(r, \infty; \mathsf{f}_1) + \overline{N}(r, \infty; \mathsf{f}_2) + \overline{N}_*(r, \infty; \mathsf{f}_1, \mathsf{f}_2) + S(r, \mathsf{f}_1) + S(r, \mathsf{f}_2).$$

Lemma 3.5. [11] Let $f_1, f_2 \in \mathscr{F}$. Suppose f_1, f_2 share (1,1) and $(\infty,0)$, and $\Omega \not\equiv 0$. Then

(i)
$$T(r, \mathsf{f}_1) \leq N_2(r, 0; \mathsf{f}_1) + N_2(r, 0; \mathsf{f}_2) + \frac{3}{2} \overline{N}(r, \infty; \mathsf{f}_1) + \overline{N}(r, \infty; \mathsf{f}_2) + \frac{1}{2} \overline{N}(r, 0; \mathsf{f}_1) + \overline{N}_*(r, \infty; \mathsf{f}_1, \mathsf{f}_2) + S(r, \mathsf{f}_1) + S(r, \mathsf{f}_2);$$

(ii)
$$T(r, \mathsf{f}_2) \leq N_2(r, 0; \mathsf{f}_1) + N_2(r, 0; \mathsf{f}_2) + \overline{N}(r, \infty; \mathsf{f}_1) + \frac{3}{2} \overline{N}(r, \infty; \mathsf{f}_2) + \frac{1}{2} \overline{N}(r, 0; \mathsf{f}_2) + \overline{N}_*(r, \infty; \mathsf{f}_2, \mathsf{f}_1) + S(r, \mathsf{f}_1) + S(r, \mathsf{f}_2).$$

Lemma 3.6. [11] Let $f_1, f_2 \in \mathscr{F}$. Suppose f_1, f_2 share (1,0) and $(\infty,0)$, and $\Omega \not\equiv 0$. Then

(i)
$$T(r, \mathsf{f}_1) \leq N_2(r, 0; \mathsf{f}_1) + N_2(r, 0; \mathsf{f}_2) + 3\overline{N}(r, \infty; \mathsf{f}_1) + 2\overline{N}(r, \infty; \mathsf{f}_2) + 2\overline{N}(r, 0; \mathsf{f}_1) + \overline{N}(r, 0; \mathsf{f}_2) + \overline{N}_*(r, \infty; \mathsf{f}_1, \mathsf{f}_2) + S(r, \mathsf{f}_1) + S(r, \mathsf{f}_2);$$

(ii)
$$T(r, \mathsf{f}_2) \leq N_2(r, 0; \mathsf{f}_1) + N_2(r, 0; \mathsf{f}_2) + 2\overline{N}(r, \infty; \mathsf{f}_1) + 3\overline{N}(r, \infty; \mathsf{f}_2) + \overline{N}(r, 0; \mathsf{f}_1) + 2\overline{N}(r, 0; \mathsf{f}_2) + \overline{N}_*(r, \infty; \mathsf{f}_2, \mathsf{f}_1) + S(r, \mathsf{f}_1) + S(r, \mathsf{f}_2).$$

Lemma 3.7. [13] Let \mathcal{L} be a L-function with degree d. Then

$$T(r, \mathcal{L}) = \frac{d}{\pi} r \log r + O(r).$$

Lemma 3.8. [9] Let \mathcal{L} be an L-function. Then $N(r, \infty; \mathcal{L}) = S(r, \mathcal{L})$.

Lemma 3.9. [15] Let $f \in \mathscr{F}$. Then $m(r, \infty; f'/f) = S(r, f)$. Since, we can write $\frac{f^{(\kappa)}}{f}$ as $\frac{f^{(\kappa)}}{f^{(\kappa-1)}} \cdot \frac{f^{(\kappa-1)}}{f^{(\kappa-2)}} \cdot \cdots \cdot \frac{f'}{f}$, we get

$$m\left(r,\infty;\frac{\mathsf{f}^{(\kappa)}}{\mathsf{f}}\right) = S(r,\mathsf{f}).$$

Lemma 3.10. Suppose $f \in \mathscr{F}$ and $d_{\kappa}[f]$ is a linear differential polynomial of f. Then

$$N(r, \infty; d_{\kappa}[f]) \leq N(r, \infty; f) + \kappa \overline{N}(r, \infty; f) + S(r, f).$$

Proof. It is easy to see that, the poles of $d_{\kappa}[f]$ occurs at the poles of f. Suppose, z_* is a pole of f of order r, then z_* is a pole of $d_{\kappa}[f]$ of order at most $r + \kappa$. Hence, we have

$$N(r, \infty; d_{\kappa}[f]) \leq N(r, \infty; f) + \kappa \overline{N}(r, \infty; f) + S(r, f).$$

Thus the proof.

Lemma 3.11. Suppose $f \in \mathscr{F}$ and $d_{\kappa}[f]$ is a linear differential polynomial of f. Then

$$\begin{split} T(r,d_{\kappa}[\mathsf{f}]) &\leq T(r,\mathsf{f}) + \kappa \overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}), \\ N(r,0;d_{\kappa}[\mathsf{f}]) &\leq T(r,d_{\kappa}[\mathsf{f}]) - T(r,1/\mathsf{f}) + N(r,0;\mathsf{f}) + S(r,\mathsf{f}), \\ N(r,0;d_{\kappa}[\mathsf{f}]) &\leq N(r,0;\mathsf{f}) + \kappa \overline{N}(r,\mathsf{f}) + S(r,\mathsf{f}). \end{split}$$

Proof. From the Nevanlinna's Fundamental Theorem-I, we have

$$N(r, 0; d_{\kappa}[f]) = T(r, d_{\kappa}[f]) - m(r, 0; d_{\kappa}[f]) + O(1).$$
(3.2)

Also, we have

$$m(r, 0; \mathbf{f}) \le m\left(r, \infty; \frac{d_{\kappa}[\mathbf{f}]}{\mathbf{f}}\right) + m\left(r, 0; d_{\kappa}[\mathbf{f}]\right),$$

this implies that

$$m(r, 0; \mathsf{f}) \le m(r, 0; d_{\kappa}[\mathsf{f}]) + S(r, \mathsf{f}),$$

which further implies that

$$-m(r,0;d_{\kappa}[f]) \le -m(r,0;f) + S(r,f). \tag{3.3}$$

Using (3.3) in (3.2), we get

$$N(r, 0; d_{\kappa}[f]) \le T(r, d_{\kappa}[f]) - m(r, 0; f) + S(r, f)$$

$$N(r, 0; d_{\kappa}[f]) \le T(r, d_{\kappa}[f]) - T(r, 1/f) + N(r, 0; f) + S(r, f).$$
(3.4)

Since,

$$T(r, d_{\kappa}[f]) = m(r, \infty; d_{\kappa}[f]) + N(r, \infty; d_{\kappa}[f])$$

$$\leq m\left(r, \infty; \frac{d_{\kappa}[f]}{f}\right) + m(r, \infty; f) + N(r, \infty; d_{\kappa}[f])$$

$$\leq m(r, \infty; f) + N(r, \infty; f) + \kappa \overline{N}(r, \infty; f) + S(r, f)$$

$$\leq T(r, f) + \kappa \overline{N}(r, \infty; f) + S(r, f). \tag{3.5}$$

Substituting (3.5) in (3.4), we get

$$N(r,0;d_{\kappa}[\mathsf{f}]) \le T(r,\mathsf{f}) + \kappa \overline{N}(r,\infty;\mathsf{f}) - T(r,1/\mathsf{f}) + N(r,0;\mathsf{f}) + S(r,\mathsf{f})$$

$$\le N(r,0;\mathsf{f}) + \kappa \overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}). \tag{3.6}$$

Thus the proof.

Lemma 3.12. Suppose $f \in \mathcal{F}$, $q \in \mathbb{N}$ and $d_{\kappa}[f]$ is a linear differential polynomial of f. Then

$$N_q(r,0;d_{\kappa}[\mathsf{f}]) \leq (\kappa+1)\left(q+\frac{\kappa}{2}\right)\overline{N}(r,0;\mathsf{f}) + \frac{\kappa(\kappa+1)}{2}\overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}).$$

Proof. We know that the number of zeros of a polynomial are less than the sum of the number of zeros of the constituent monomials and hence

$$\begin{split} N_q(r,0;d_{\kappa}[\mathsf{f}]) &\leq \sum_{i=0}^{\kappa} N_q(r,0;\mathsf{f}^{(i)}) \\ &\leq \sum_{i=0}^{\kappa} \left[N_{q+i}(r,0;\mathsf{f}) + i \overline{N}(r,\infty;\mathsf{f}) \right] + S(r,\mathsf{f}) \\ &\leq \sum_{i=0}^{\kappa} \left(q+i \right) \overline{N}(r,0;\mathsf{f}) + \sum_{i=0}^{\kappa} i \overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}) \\ &\leq (\kappa+1) \left(q + \frac{\kappa}{2} \right) \overline{N}(r,0;\mathsf{f}) + \frac{\kappa(\kappa+1)}{2} \overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}). \end{split}$$

Thus the proof.

Lemma 3.13. Suppose $f \in \mathscr{F}$ and $d_{\kappa}[f]$ is a linear differential polynomial of f. Then

$$N\left(r,\infty;\frac{d_{\kappa}[\mathsf{f}]}{\mathsf{f}}\right) \leq \kappa \overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}).$$

Proof. We know that,

$$\frac{d_{\kappa}[\mathsf{f}]}{\mathsf{f}} = \sum_{i=0}^{\kappa} \frac{\mathsf{f}^{(i)}}{\mathsf{f}}.$$

If z_* is a pole of f of order r, then z_* is a pole of $\frac{f'}{f}$ of order 1 and a pole of $\frac{f''}{f}$ of order 2 and so on. Hence z_* is a pole of $\frac{f^{(\kappa)}}{f}$ of order κ . Thus,

$$N\left(r,\infty;\frac{d_{\kappa}[\mathsf{f}]}{\mathsf{f}}\right) \leq \kappa \overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}).$$

Thus the proof.

Lemma 3.14. Let $f \in \mathscr{F}$. Let $F_1 = f^n(f-1)^m d_{\kappa}[f]$, where $n, m(\geq 0)$ are positive integers. Then

$$(n+m+1-\kappa)T(r,\mathsf{f}) \leq T(r,\mathsf{F}_1) + S(r,\mathsf{f}).$$

Proof. From Lemmas 3.1, 3.9, 3.13 and the Nevanlinna's Fundamental Theorem -I, we have

$$\begin{split} (n+m+1)T(r,\mathsf{f}) &= T(r,\mathsf{f}^n(\mathsf{f}-1)^m\mathsf{f}) + S(r,\mathsf{f}) \\ &\leq T\left(r,\frac{\mathsf{F}_1\mathsf{f}}{d_\kappa[\mathsf{f}]}\right) + S(r,\mathsf{f}) \\ &\leq T(r,\mathsf{F}_1) + T\left(r,\frac{d_\kappa[\mathsf{f}]}{\mathsf{f}}\right) + S(r,\mathsf{f}) \\ &\leq T(r,\mathsf{F}_1) + N\left(r,\infty;\frac{d_\kappa[\mathsf{f}]}{\mathsf{f}}\right) + m\left(r,\infty;\frac{d_\kappa[\mathsf{f}]}{\mathsf{f}}\right) + S(r,\mathsf{f}) \\ &\leq T(r,\mathsf{F}_1) + \kappa \overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}). \end{split}$$

Thus, $(n+m+1-\kappa)T(r,f) \leq T(r,\mathsf{F}_1) + S(r,f)$.

4. Proof of Theorems

4.1. Proof of Theorem 2.1.

Let,

$$F_{1} = f^{n}(f - 1)^{m} d_{\kappa}[f] \quad \text{and} \quad \mathcal{L}_{1} = \mathcal{L}^{n}(\mathcal{L} - 1)^{m} d_{\kappa}[\mathcal{L}],$$

$$F^{*} = F_{1}^{(l)} \quad \text{and} \quad \mathcal{L}^{*} = \mathcal{L}_{1}^{(l)},$$

$$\Omega = \left(\frac{F^{*''}}{F^{*'}} - \frac{2F^{*'}}{F^{*} - 1}\right) - \left(\frac{\mathcal{L}^{*''}}{\mathcal{L}^{*'}} - \frac{2\mathcal{L}^{*'}}{\mathcal{L}^{*} - 1}\right). \tag{4.1}$$

From the hypothesis we have F^* and \mathcal{L}^* share $(1, \kappa_1)$ and also share (∞, κ_2) . We now discuss the following two cases.

Case 1. We assume that $\Omega \not\equiv 0$. Now we consider the following three subcases.

Subcase 1.1. Suppose that $\kappa_1 \geq 2$ and $0 \leq \kappa_2 \leq \infty$, then using Lemmas 3.3, 3.4, 3.8, 3.11 and 3.14 we obtain

$$T(r,\mathsf{F}^*) \leq N_2(r,0;\mathsf{F}^*) + N_2(r,0;\mathcal{L}^*) + \overline{N}(r,\infty;\mathsf{F}^*) + \overline{N}(r,\infty;\mathcal{L}^*) + \overline{N}_*(r,\infty;\mathsf{F}^*,\mathcal{L}^*) + S(r,\mathsf{F}^*) + S(r,\mathcal{L}^*) \leq T(r,\mathsf{F}^*) - T(r,\mathsf{F}_1) + N_{l+2}(r,0;\mathsf{F}_1) + l\overline{N}(r,\infty;\mathcal{L}_1) + N_{l+2}(r,0;\mathcal{L}_1) + S(r,\mathsf{f}) + S(r,\mathcal{L}).$$

This implies,

$$(n+m+1-\kappa)T(r,\mathsf{f}) \leq (l+2)\overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f}) + (l+2)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L}) + S(r,\mathsf{f}) + S(r,\mathcal{L}).$$

$$(4.2)$$

By similar calculations, we get

$$(n+m+1-\kappa)T(r,\mathcal{L}) \leq (l+2)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa \overline{N}(r,\infty;\mathcal{L}) + (l+2)\overline{N}(r,0;\mathfrak{f}) + mN(r,0;\mathfrak{f}) + N(r,0;\mathfrak{f}) + \kappa \overline{N}(r,\infty;\mathfrak{f}) + S(r,\mathfrak{f}) + S(r,\mathcal{L}).$$
(4.3)

Now, from combining the inequalities (4.2) and (4.3), we get

$$(n+m+1-\kappa)[T(r,\mathsf{f})+T(r,\mathcal{L})] \le 2(l+2+m+1)[N(r,0;\mathsf{f})+N(r,0;\mathcal{L})] + S(r,\mathsf{f}) + S(r,\mathcal{L}),$$

which contradicts $n > \kappa + 2l + m + 5$.

Subcase 1.2. Suppose $\kappa_1 = 1$ and $\kappa_2 = 0$, then using Lemmas 3.3, 3.5, 3.8, 3.11 and 3.14 we obtain

$$T(r, \mathsf{F}^*) \leq N_2(r, 0; \mathsf{F}^*) + N_2(r, 0; \mathcal{L}^*) + \frac{3}{2} \overline{N}(r, \infty; \mathsf{F}^*) + \overline{N}(r, \infty; \mathcal{L}^*)$$

$$+ \overline{N}_*(r, \infty; \mathsf{F}^*, \mathcal{L}^*) + \frac{1}{2} \overline{N}(r, 0; \mathsf{F}^*) + S(r, \mathsf{F}^*) + S(r, \mathcal{L}^*)$$

$$\leq T(r, \mathsf{F}^*) - T(r, \mathsf{F}_1) + N_{l+2}(r, 0; \mathsf{F}_1) + N_{l+2}(r, 0; \mathcal{L}_1) + l \overline{N}(r, \infty; \mathcal{L}_1)$$

$$+ \frac{1}{2} [N_{l+1}(r, 0; \mathsf{F}_1) + l N(r, \infty; \mathsf{F}_1)] + S(r, \mathsf{f}) + S(r, \mathcal{L}),$$

which implies that

$$(n+m+1-\kappa)T(r,\mathsf{f}) \leq (l+2)\overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f})$$

$$+ (l+2)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L})$$

$$+ \frac{1}{2}(l+1)\overline{N}(r,0;\mathsf{f}) + \frac{m}{2}N(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f})$$

$$+ S(r,\mathsf{f}) + S(r,\mathcal{L}).$$

$$(4.4)$$

By similar calculations, we get

$$(n+m+1-\kappa)T(r,\mathcal{L}) \leq (l+2)\overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f}) + (l+2)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L}) + \frac{1}{2}(l+1)\overline{N}(r,0;\mathcal{L}) + \frac{m}{2}N(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L}) + S(r,\mathsf{f}) + S(r,\mathcal{L}).$$

$$(4.5)$$

Now, by combining the inequalities (4.4) and (4.5), we get

$$\begin{split} (n+m+1-\kappa)[T(r,\mathsf{f})+T(r,\mathcal{L})] & \leq 2(l+2+m+1)[N(r,0;\mathsf{f})+N(r,0;\mathcal{L})] \\ & + \left(\frac{l+1}{2}+\frac{m}{2}+1\right)[N(r,0;\mathsf{f})+N(r,0;\mathcal{L})] \\ & + S(r,\mathsf{f}) + S(r,\mathcal{L}), \end{split}$$

which contradicts $n > \kappa + \frac{5l+3m+13}{2}$.

Subcase 1.3. Suppose $\kappa_1 = 0$ and $\kappa_2 = 0$, then using Lemmas 3.3, 3.6, 3.8, 3.11 and 3.14 we obtain

$$\begin{split} T(r,\mathsf{F}^*) & \leq N_2(r,0;\mathsf{F}^*) + N_2(r,0;\mathcal{L}^*) + 3\overline{N}(r,\infty;\mathsf{F}^*) + 2\overline{N}(r,\infty;\mathcal{L}^*) + 2\overline{N}(r,0;\mathsf{F}^*) \\ & + \overline{N}_*(r,\infty;\mathsf{F}^*,\mathcal{L}^*) + \overline{N}(r,0;\mathcal{L}^*) + S(r,\mathsf{F}^*) + S(r,\mathcal{L}^*) \\ & \leq T(r,\mathsf{F}^*) - T(r,\mathsf{F}_1) + N_{l+2}(r,0;\mathsf{F}_1) + N_{l+2}(r,0;\mathcal{L}_1) + l\overline{N}(r,\mathcal{L}_1) \\ & + 2N_{l+1}(r,0;\mathsf{F}_1) + l\overline{N}(r,\mathsf{F}_1) + N_{l+1}(r,0;\mathcal{L}_1) + l\overline{N}(r,\infty;\mathcal{L}_1) \\ & + S(r,\mathsf{F}_1) + S(r,\mathcal{L}_1), \end{split}$$

which implies that,

$$(n+m+1-\kappa)T(r,\mathsf{f}) \leq (l+2)\overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f}) + (l+2)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L}) + 2(l+1)\overline{N}(r,0;\mathsf{f}) + 2mN(r,0;\mathsf{f}) + 2N(r,0;\mathsf{f}) + 2\kappa\overline{N}(r,\infty;\mathsf{f}) + (l+1)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L}) + S(r,\mathsf{f}) + S(r,\mathcal{L}).$$

$$(4.6)$$

By similar calculations, we get

$$(n+m+1-\kappa)T(r,\mathcal{L}) \leq (l+2)\overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f}) + (l+2)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L}) + 2(l+1)\overline{N}(r,0;\mathcal{L}) + 2mN(r,0;\mathcal{L}) + 2N(r,0;\mathcal{L}) + 2\kappa\overline{N}(r,\infty;\mathcal{L}) + (l+1)\overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}) + S(r,\mathcal{L}).$$
(4.7)

Now, by combining the inequalities (4.6) and (4.7), we get

$$\begin{split} (n+m+1-\kappa)[T(r,\mathsf{f})+T(r,\mathcal{L})] & \leq 2(l+2+m+1)[N(r,0;\mathsf{f})+N(r,0;\mathcal{L})] \\ & + (3l+3m+6)[N(r,0;\mathsf{f})+N(r,0;\mathcal{L})] \\ & + S(r,\mathsf{f}) + S(r,\mathcal{L}), \end{split}$$

which contradicts $n > \kappa + 5l + 4m + 11$.

Case 2. We now assume that $\Omega \equiv 0$. Then

$$\left(\frac{\mathsf{F}^{*''}}{\mathsf{F}^{*'}} - \frac{2\mathsf{F}^{*'}}{\mathsf{F}^{*} - 1}\right) \equiv \left(\frac{\mathcal{L}^{*''}}{\mathcal{L}^{*'}} - \frac{2\mathcal{L}^{*'}}{\mathcal{L}^{*} - 1}\right).$$

By integrating twice the both sides of the above equality we get,

$$\frac{1}{\mathsf{F}^* - 1} = \frac{a_1}{\mathcal{L}^* - 1} + a_2,\tag{4.8}$$

where $a_1(\neq 0)$ and a_2 are constants. (4.8) obviously says that F^* , \mathcal{L}^* share the value 1 CM and hence they share the value 1 with weight $\kappa_1 = 2$, and therefore, $n > \kappa + 2l + m + 5$.

Now, let us discuss the three following subcases separately.

Subcase 2.1. If possible $a_2 \neq 0$ and $a_1 = a_2$, then from (4.8), we deduce

$$\frac{1}{\mathsf{F}^* - 1} = \frac{a_2 \mathcal{L}^*}{\mathcal{L}^* - 1} \tag{4.9}$$

If $a_2 = -1$, then from (4.9), we obtain

$$\mathsf{F}^*\mathcal{L}^* = 1,$$

i.e.,

$$[\mathsf{f}^n(\mathsf{f}-1)^m d_{\kappa}[\mathsf{f}]]^{(l)} [\mathcal{L}^n(\mathcal{L}-1)^m d_{\kappa}[\mathcal{L}]]^{(l)} \equiv 1,$$

which implies

$$[\mathsf{f}^n(\mathsf{f}-1)^m d_{\kappa}[\mathsf{f}]]^{(l)} \equiv \frac{1}{[\mathcal{L}^n(\mathcal{L}-1)^m d_{\kappa}[\mathcal{L}]]^{(l)}}.$$
(4.10)

Since F^* and \mathcal{L}^* share the poles, (4.10) is not possible.

If $a_2 \neq -1$, then from (4.9), we have

$$\frac{1}{\mathsf{F}^*} = \frac{a_2 \mathcal{L}^*}{(a_2 + 1)\mathcal{L}^* - 1} \quad \text{and so} \quad \overline{N}\left(r, \frac{1}{1 + a_2}; \mathcal{L}^*\right) = \overline{N}(r, 0; \mathsf{F}^*).$$

From Nevanlinna's Fundamental Theorem -II, we have

$$T(r, \mathcal{L}_1) \leq T(r, \mathcal{L}^*) + S(r, \mathcal{L}^*)$$

$$\leq \overline{N}(r, 0; \mathcal{L}^*) + \overline{N}\left(r, \frac{1}{1 + a_2}; \mathcal{L}^*\right) + \overline{N}(r, \infty; \mathcal{L}^*) + S(r, \mathcal{L}^*)$$

$$\leq \overline{N}(r, 0; \mathsf{F}^*) + \overline{N}(r, 0; \mathcal{L}^*) + S(r, \mathcal{L}^*)$$

Using Lemmas 3.3, 3.11 and 3.14, we have

$$(n+m+1-\kappa)T(r,\mathcal{L}) \leq (l+1)\overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f}) + (l+1)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L}) + S(r,\mathsf{f}) + S(r,\mathcal{L})$$

Similarly, we have for T(r, f)

$$(n+m+1-\kappa)T(r,\mathsf{f}) \leq (l+1)\overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa\overline{N}(r,\infty;\mathsf{f}) + (l+1)\overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa\overline{N}(r,\infty;\mathcal{L}) + S(r,\mathsf{f}) + S(r,\mathcal{L})$$

Thus by combining the above two inequalities, we get

$$(n+m+1-\kappa)\{T(r,\mathsf{f})+T(r,\mathcal{L})\} \leq (2l+2m+4)\{N(r,0;\mathsf{f})+N(r,0;\mathcal{L})\} + S(r,\mathsf{f}) + S(r,\mathcal{L})$$

which contradicts $n > \kappa + 2l + m + 5$.

Subcase 2.2. Suppose $a_2 \neq 0$ and $a_1 \neq a_2$. Then by (4.8), we get

$$\mathsf{F}^* = \frac{(a_2+1)\mathcal{L}^* - (a_2-a_1+1)}{a_1\mathcal{L}^* + (a_1-a_2)} \quad \text{and so} \quad \overline{N}\left(r, \frac{a_2-a_1+1}{a_2+1}; \mathcal{L}^*\right) = \overline{N}(r, 0; \mathcal{L}^*).$$

Proceeding in a manner similar to subcase 2.1, we can arrive at a contradiction.

Subcase 2.3. Let $a_2 = 0$ and $a_1 \neq 0$. Then from (4.8), we get

$$\mathsf{F}^* = \frac{\mathcal{L}^* + a_1 - 1}{a_1}$$
 and $\mathcal{L}^* = a_1 \mathsf{F}^* - (a_1 - 1)$.

If $a_1 \neq 1$, it follows that,

$$\overline{N}\left(r, \frac{a_1-1}{a_1}; \mathsf{F}^*\right) = \overline{N}(r, 0; \mathcal{L}^*) \quad \text{and} \quad \overline{N}(r, 1-a_1; \mathcal{L}^*) = \overline{N}(r, 0; \mathsf{F}^*).$$

Following an argument as in subcase 2.1, we obtain a contradiction. Thus $a_1 = 1$, which implies $F^* = \mathcal{L}^*$, and therefore,

$$(\mathsf{f}^n(\mathsf{f}-1)^m d_{\kappa}[\mathsf{f}])^{(l)} = (\mathcal{L}^n(\mathcal{L}-1)^m d_{\kappa}[\mathcal{L}])^{(l)}. \tag{4.11}$$

Integrating the above equation for l times, we get

$$(\mathsf{f}^n(\mathsf{f}-1)^m d_{\kappa}[\mathsf{f}]) = (\mathcal{L}^n(\mathcal{L}-1)^m d_{\kappa}[\mathcal{L}]) + b(z), \tag{4.12}$$

where b(z) is a polynomial of degree at most l-1.

Suppose $b(z) \neq 0$, then we get

$$\frac{\mathsf{f}^n(\mathsf{f}-1)^m d_{\kappa}[\mathsf{f}]}{b(z)} = \frac{\mathcal{L}^n(\mathcal{L}-1)^m d_{\kappa}[\mathcal{L}]}{b(z)} + 1,\tag{4.13}$$

i.e.,

$$\frac{\mathsf{F}_1}{b(z)} = \frac{\mathcal{L}_1}{b(z)} + 1. \tag{4.14}$$

By the Nevanlinna's Fundamental Theorem -II and Lemma 3.14, we have

$$T(r,\mathsf{F}_{1}) \leq \overline{N}\left(r,\infty;\frac{\mathsf{F}_{1}}{b(z)}\right) + \overline{N}\left(r,0;\frac{\mathsf{F}_{1}}{b(z)}\right) + \overline{N}\left(r,0;\frac{\mathcal{L}_{1}}{b(z)}\right) + S(r,\mathsf{F}_{1})$$

$$(n+m+1-\kappa)T(r,\mathsf{f}) \leq \overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa \overline{N}(r,\infty;\mathsf{f})$$

$$+ \overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa \overline{N}(r,\infty;\mathcal{L})$$

$$+ S(r,\mathsf{f}) + S(r,\mathcal{L}). \tag{4.15}$$

Similarly, we have

$$(n+m+1-\kappa)T(r,\mathsf{f}) \leq \overline{N}(r,0;\mathcal{L}) + mN(r,0;\mathcal{L}) + N(r,0;\mathcal{L}) + \kappa \overline{N}(r,\infty;\mathcal{L}) + \overline{N}(r,0;\mathsf{f}) + mN(r,0;\mathsf{f}) + N(r,0;\mathsf{f}) + \kappa \overline{N}(r,\infty;\mathsf{f}) + S(r,\mathsf{f}) + S(r,\mathcal{L}).$$
(4.16)

combining inequalities (4.15) and (4.16), we get

$$(n+m+1-\kappa)[T(r,f)+T(r,\mathcal{L})] \le (2m+4)[N(r,0;f)+N(r,0;\mathcal{L})] + S(r,f)+S(r,\mathcal{L}),$$

which contradicts $n > \kappa + 2l + m + 5$. Therefore b(z) = 0. Hence from (4.12), we have

$$(\mathsf{f}^n(\mathsf{f}-1)^m d_{\kappa}[\mathsf{f}]) = (\mathcal{L}^n(\mathcal{L}-1)^m d_{\kappa}[\mathcal{L}]), \tag{4.17}$$

which is the required conclusion. Further if $\kappa = 0$, then from (4.17), we have

$$f^{n+1}(f-1)^m = \mathcal{L}^{n+1}(\mathcal{L}-1)^m$$
(4.18)

Let $t = \frac{f}{\mathcal{L}}$. We shall consider two subcases of subcase 2.3.

Subcase 2.3.1. If t(z) is a constant function, then by substitution of $f = t\mathcal{L}$ in (4.18), we obtain

$$f^{n+1}[f^m - mf^{m-1} + \dots + (-1)^m] = \mathcal{L}^{n+1}[\mathcal{L}^m - m\mathcal{L}^{m-1} + \dots + (-1)^m]$$
(4.19)

substituting $f = t\mathcal{L}$ in (4.19), we will have

$$\mathcal{L}^{n+m+1}[t^{n+m+1}-1] - m\mathcal{L}^{n+m}[t^{n+m}-1] + \dots + (-1)^m \mathcal{L}^{n+1}[t^{n+1}-1] = 0, (4.20)$$

which implies $t^d = 1$, where d = GCD(n + m + 1, n + m, n + m - 1, ..., n + 1). Thus we get the conclusion $f \equiv t\mathcal{L}$, where t is a constant such that $t^d = 1$.

Subcase 2.3.2. Suppose, t(z) is not a constant, then f and \mathcal{L} satisfy the algebraic equation $R(f, \mathcal{L}) = 0$, where

$$R(\omega_1, \omega_2) = \omega_1^{n+1}(z)(\omega_1(z) - 1)^m - \omega_2^{n+1}(z)(\omega_2(z) - 1)^m.$$

This completes the proof of Theorem 2.1.

4.2. Proof of Corollary 2.1, Theorem 2.2 and Corollary 2.2.

Corollary 2.1, Theorem 2.2 and Corollary 2.2. can be proved easily in a similar way as Theorem 2.1.

5. Conclusion

We have examined the uniqueness of differential polynomials of f and \mathcal{L} , when they share the values 1 with weight κ_1 and ∞ with weight κ_2 . By fixing the values $\alpha_1 = 1$ and $\alpha_2 = \infty$ and additionally considering the linear differential polynomial, our results extend as well as reduce the weights of sharing κ_1, κ_2 in the result of Hao and Chen [3], as well as reduce the condition for n in their results [2].

Also, we can pose the following open questions.

Open Questions:

- 1. What happens to Theorem 2.1 and Corollary 2.1, if we replace the linear differential polynomial $d_{\kappa}[f]$ by a homogeneous and non-homogeneous differential polynomials H[f] as defined in [14], as well as by difference differential polynomial P[f] as defined in [10]?
- 2. Can the condition for n in Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 be still reduced?

Acknowledgments

Authors are indebt to the editor and referees for their careful reading and valuable suggestions which helped to improve the manuscript.

References

- [1] Banerjee, A., Uniqueness of meromorphic functions that share two sets, Southeast Asian Bull. Math., 31(1), (2007), 7-17.
- [2] Hao, W. J., Chen, J. F., Uniqueness of L-functions concerning certain differential polynomials, Discrete Dynamics in Nature and Society, (2018), 12.pp
- [3] Hao, W. J., Chen, J. F., Uniqueness theorems for *L*-functions in the extended Selberg class, Open Math, 16 (2018), 1291–1299.
- [4] Hayman, W. K., Meromorphic functions, Clarendon Press, Oxford, 1964.
- [5] Lahiri, I., Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), 193-206.
- [6] Lahiri, I., Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl., 46(3), (2001), 241-253.
- [7] Lin, W. C., Yi, H. X., Uniqueness theorems for meromorphic function, Indian J. Pure Appl. Math., 35(2), (2004), 121-132.
- [8] Liu, F., Li, X. M., Yi, H. X., Value distribution of *L*-functions concerning shared values and certain differential polynomials, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 93(5), (2017), 41–46.
- [9] Mandal, N., Datta, N. K., Uniqueness of L-function and its certain differential monomial concerning small functions, J. Math. Comput. Sci., 10(5), (2020), 2155-2163.

- [10] Raj, P. N., Waghamore, H. P., Results on uniqueness of a polynomial and difference differential polynomial, Advanced Studies: Euro-Tbilisi Mathematical Journal, 16(2), (2023), 79-96.
- [11] Sahoo, P., Meromorphic functions that share fixed points with finite weights, Bull. Math. Anal. Appl., 2(4), (2010), 106-118.
- [12] Selberg, A., Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, (1992), 367-385.
- [13] Steuding, J., Value-distribution of L-functions, Spinger, Berlin, 2007.
- [14] Waghamore, H. P., Raj, P. N., Uniqueness of meromorphic functions with finite logarithmic order regarding their q-shift difference and differential polynomial, J. frac. Cal. and Appl., 13(2), (2022), 89-99.
- [15] Yang, C. C., H. X. Yi., Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.
- [16] Yang, L., Value distribution theory. Translated and revised from the 1982 Chinese original, Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1993.
- [17] Zhang, X., Value sharing of meromorphic functions and some questions of Dyavanal, Front. Math. China, 7(1), (2012), 161-176.