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Abstract: Inspired by a lot of studies on the uniqueness results of a L-function
with a meromorphic function, in this article, we examine the uniqueness of two
differential polynomials, one generated by a meromorphic function with finitely
many poles and another by a L-function, when they share two values with some
weight. The results of our examination extend, generalize as well as improve the
results of Hao and Chen [2, 3.
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1. Introduction

Let C represent the complex plane, N represent the set of natural numbers,
W =NuU {0}, C = CU {0}, C = C\{0}.

We assume that the readers are well aware of the standard notations and def-
initions used in the Nevanlinna value distribution theory such as T'(r,f), m(r,f),
N(r,f), N(r,f) etc. The reader can refer ([4], [15], [16]) for basics of Nevanlinna
theory.

Let .# = {f(2)|f(z)is a non-constant meromorphic function in C} and let
“={g(2)|g(z) is a non-constant meromorphic function C with finitely many poles}.

For fi,fy € .Z and b € C, if f; — b and fy — b have identical zeros taking into account
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the multiplicities then we say, fi(z) and fy(z) share b CM (counting multiplicities),
if multiplicities are not taken into account then we say f;(z) and fy(2) share b IM
(ignoring multiplicities).

In general for f € .#, m(r,f) denotes the proximity function of f, N(r, f) denotes
the counting function of poles of f(z), whose multiplicities are taken into account
(respectively N(r,f) denotes the reduced counting function when multiplicities are

ignored). N (r,b;f) (notation inter-changable with N (7", ﬁ)) denotes the counting

function of b-points of f(z), whose multiplicities are taken into account (respectively
N(r,b;f) denotes the reduced counting function when multiplicities are neglected).
T(r,f) represents the characteristic function of f. S(r,f) denotes any quantity
satisfying S(r,f) = o(T'(r,f)) as r — oo outside a possible exceptional set of finite
linear measure. A meromorphic function 7(z) is said to be a small function of f, if

T(r,n) = S(r,f).

Below we give some definitions which are required for our paper.

Definition 1.1. [5, 6] Let f,,f, € . and p € WU {oc}. For b € C, we represent
by E,(b;f1) the set of all zeros of f; — b where a zero of multiplicity s is counted s
times if s < p and p+ 1 times if s > p. If E,(b;f;) = E,(b;f2), we say that f, fs
share b with weight p.

Definition 1.2. [5] Let ¢ € W and f; € .7, then we set N,(r,b;f1) as the counting
function of b-points of f1, where any m multiplicity b-point of f1 is counted m times
if m < q and q times if m > q.

Definition 1.3. [5] Suppose f| and fy share the value b IM. Then we set N, (r, b; f1, 2)
as the reduced counting function of those b-points of fi whose multiplicities differ
from the multiplicities of the corresponding b-points of fs.

In modern number theory, L-functions play a very important role. The value
distributions of the L-functions provides valuable insights into the algebraic struc-
ture that is not available through the use of the elementary algebraic techniques.
Specifically, the distribution of zeros of L-functions holds particular significance
for numerous multiplicative number theory problems. One illustration is the Rie-
mann hypothesis in the right half of the critical strip for a non-vanishing Riemann
zeta-function and its impact on the distribution of prime numbers.

One feature all L-functions have in common is that they can be described by
an Euler product. Therefore all L-function can be described as a product taken
over prime numbers. Taking into account unique prime factorization of integers
we can express L-functions as Dirichlet series. We may regard the well-known

-1
Riemann zeta-function as the prototype, i.e., ((z) = > o0, L = I, (1 — I}) ,

n=1 nz
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where z = x 4+ 1y, x > 1 and p stands for a prime integer and the product is taken
over all prime numbers.

Towards the end of twentieth century, in an effort to summarize the core prop-
erties of classical L-functions, Selberg [12] gave an axiomatic characterization of
what would be called general L-functions. A L-function £ means a Selberg class
function with the Riemann zeta function ((z) = Y- - as the prototype and the
Selberg class S of L-function is defined as follows:

Definition 1.4. [12] The Selberg class S consists of the functions L satisfying the
following axioms:

1. (Dirichlet series) L£(z) = S22, %) absolutely convergent for o > 1.

n=1 nz ’

2. (Analytic continuation) There exists an integer m such that (z — 1)"L(2) is
an entire function of finite order.

3. (Functional equation) There exist an integer r > 0, positive real numbers
Q, A, complex numbers j1; with Re j1; > 0 and w with |w| = 1, such that the
function A(z) defined by

A(z) = @ H LAz + ) £(2) = 7(2)L£(2),

satisfies the functional equation A(z) = wA(1—2z). We would call the function
v(2) the ~y-factor.

4. (Ramanugan conjecture) For every € > 0, a(n) = O(nf).

5. (Euler product) a(1) =1, and log L(z) = .+, %, where b(n) = 0 unless n
is a prime power, and b(n) < n? for some 6 < %

By the comment on the order of a function, we can choose m in axiom (2) to
be the order of the pole of £ at z = 1.

Since L-functions are analytically continued as meromorphic functions, we can
study the value distribution and uniqueness results for a L-function, similar to any
arbitrary meromorphic function using the Nevanlinna value distribution theory and
the fact that L-functions has the only pole at z = 1 helps us in this.

So, by utilizing this fact in 2017, Liu et. al [8] studied the uniqueness results of
a differential polynomial of a L-function with the same of a meromorphic function
sharing a non-zero finite value and obtained the following result.
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Theorem A. [8] Letf € . and L be a L-function. Letn,l € N such thatn > 3146.
Suppose that [f*]O and [L£"]Y share 1 CM, then f = tL for a constant t satisfying
" =1.

In 2018, Hao and Chen [2] generalized the differential monomial of Liu et. al
8], as well as reduced the sharing value from CM to IM and obtained the following
results.

Theorem B. [2| Let f € 4 and L be a L-function. Let n,m,l € N. Suppose that
[fr(f — )™ and [£(L — 1)WY share 1 IM. If n > 7l +4m + 11, | > 2, then
f=Lorf"(f-—1)"=L(L—1)".
Theorem C. [2] Let f € & and L be a L-function. Let n,l € N. Suppose that
[f1O and [LM)D share 1 IM. If n > 71+ 11, then f = tL for a constant t satisfying
t" = 1.

Once again in 2018, Hao and Chen [3], studied the uniqueness result of a L-
function with an arbitrary meromorphic function as follows.
Theorem D. [3] Let L be a L-function and f € 4. Let ay,a € C and K1,k € N
satisfying kike > 1. If B, (o4, £) = Ey, (o, f), fori=1,2, then L =1,
The main motivation to this paper are the following questions,

(i) whether we can reduce the condition for n in Theorem B and C?7
(ii) whether we can reduce the weights of sharing k1, ko in Theorem D?

(iii) whether a similar uniqueness result holds when we consider, an additional
linear differential polynomial along with the polynomial of £ as defined below?

Definition 1.5. Let f € .Z. Then we define its linear differential polynomial d,|f]
as
do[f] = aof + arf + aof” + - - - + a,f", (1.1)

where ag, ay, as, ...,ax_1 and a, # 0 are complex constants.

2. Main Results
As a positive answer to the above questions, we give the following results.

Theorem 2.1. Let L be a L-function and f € 4. Let F* = (f*(f — 1)™d,[f])?
and L* = (L"(L — 1)"d.[L))V. Let a; = 1,ay = 0o and Ky, ky € WU {0}, If
E,, (a1, L*) = E,, (a1, F*) and E., (a2, L*) = E,, (as, F*), such that

(i) n>Kk+2l+m+5, when k1 > 2 and 0 < kg < 00 or,

(i) n > k+ 3 yhen 1y =1 and Ky = 0 or,
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(11i) n > Kk + 50+ 4m + 11, when k1 =0 and Ky = 0,

then we have f"(f — 1)™d,[f] = L"(L — 1)"d[L]. Further, if kK =0, then we have
one of the following conclusions

(i) f = tL, for a constant t satisfying t¢ = 1, where d = GCD(n +m + 1,n +
m,n+m-—1,..n+1).

(ii) f and L satisfy the algebraic equation R(f, L) = 0, where

R(wy,wz) = wi™ (2)(wi(2) — )™ — wy ™ (2) (wa(2) — 1)™

Example. Let f = ﬁ +land £= )] n—lz + 1. Then it is easy to see that f and £

n=1
share the values 1 and oo CM. Suppose [ = 0, m = 0 and k = 0, then again F* and
L* shares 1 and oo CM, but none of the conclusions of Theorem 2.1 holds, which
shows that the conditions given in the theorem are necessary, but not sufficient.

Corollary 2.1. Let L be a L-function and f € 4. Let F* = (f*d.[f])¥ and
L= (Lrd L)V, Let ay = 1,ay = oo and k1, ke € WU {0} If E,, (a1,L*) =
E,, (a1, F*) and E,,(az, L*) = E., (az, F*), such that

(1)) n>Kk+2l+5, when k1 > 2 and 0 < Ky < 00 or,
(i) n > k+ 13 when k1 =1 and ks = 0 or,
(11i)) n > Kk + 5l + 11, when k1 =0 and ke =0,
then we have f*d,[f] = L"d[L]. Further, if K = 0, then we have f = sL, for a

constant s satisfying s"t1 = 1.

Theorem 2.2. Let L be a L-function and f € 4. Let F* = (f*(f — 1)™)" and
L= (LML —-1)™)D. Let ay = 1,a3 = o0 and k1, ke € WU {o0}. IfE, (a1, L) =
E., (a1, F*) and E,,(as, L*) = E,,(as, F*), such that

(1) n>2l4+m+4, when k1 > 2 and 0 < Ky < 00 or,
(i1) n > 5l+32—m+9, when k1 =1 and ke = 0 or,
(11i) n > Kk + 5l +4m + 7, when k1 =0 and ke =0,

then we have one of the following conclusions

(i) f = tL, for a constant t satisfying t* = 1, where d = GCD(n + m,n +m —
Ln+m—2,..,n).
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(11) f and L satisfy the algebraic equation R(f, L) = 0, where

Rfwy, w2) = wi'(2)(wi(z) = D)™ —wy(2)(wa(2) = ™.

Corollary 2.2. Let L be a L-function andf € 4. Let ay = 1,a9 = 00 and Ky, Ko €
WU {oo}. If By, (a1, [£"]V) = By, (ar, [fM)D) and By, (as, [£7]D) = By, (az[f"]D),
such that

(i) n> 20+ 4, when k1 > 2 and 0 < Ky < 00 or,
(ii) n > 222 when ky =1 and ko =0 or,
(111) n > Kk +5l+ 7, when k1 =0 and ke = 0,
then we have one f =tL, for a constant t satisfying t"* = 1.

Remarks. By additionally considering that the differential polynomials of f and
L share oo with weight ko we have obtained Theorems 2.1, 2.2 and Corollaries
2.1, 2.2. We can see that Theorem 2.2 and Corollary 2.2 are improvements of
the Theorem B and C respectively, where as Theorem 2.1 and Corollary 2.1 are
generalization as well as improvements of Theorem D.

3. Lemmas
Here we provide all the lemmas which we will be using. Let .Z={f(2)|f(z) is a
non-constant meromorphic function in C}. For any fi,fs € %, let {2 be defined as:

1 of 7o of
QE(f_%_f 11)_(1‘%_1‘ 21)' (3:1)
1 1= 2 2

Lemma 3.1. [15] Let f € F andn € N. Let 2,(f) = a,f" + ap_1f" 1 + - - + aif,
where a,; for k = 1,2,...,n are meromorphic functions such that T(r,a,) = S(r,f)
fork=1,2,...n and a, 0. Then

T(r, Z,(f)) = nT(r,f)+ S(r,f).

Lemma 3.2. [17] Let f1,fy € .F and a(2)(# 0,00) be a small function of fi and
fa. Suppose fi and fy share a(z) IM, then one of the following three cases holds:

(i)
T(r,f1) < No(r,0;f1) + No(r,00;f1) + No(r,0;fa) + No(r, 00; fa) + Q(N(r, 0;f1)
+ N(r, 003 1)) + N(r,0; f2) + N(r, 00;f2) + S(r, f1) + S(r, fa),

and a similar inequality holds for T(r,f3),
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(ii) fifs = 1,
(iii) 1 = f,.
Lemma 3.3. [7] Let f € % and k,q € N. Then
N,(r,0;£%)) < T(r, f%)) — T(r,f) + Noyqo(r, 0;f) + S(r,f),

and
N,(r,0; f(”)) < Nyyq(r, 0;f) + f@'N(r, oo; f) + S(r,f).

Lemma 3.4. [1] Let f,fy € Z#. Suppose fi, fy share (1,2) and (oo, k), where
0<k<ooand2#0. Then

T(r,f1) < No(r,0;f1) + No(r,0;fs) —{—N(T, oo; f1) —{—N(T, 00; fy) —J—N*(r, 00; f1, fa)
+ S(r, f1> + S(’f’, fg)

Lemma 3.5. [11] Let fy,fy € F. Suppose 1, fy share (1,1) and (c0,0), and £2 £ 0.
Then

(i) T(r,f1) < No(r,0;f1) + No(r,0;fy) + gﬁ(r, 00; f1) 4+ N(r, 00; fy) + %N(T, 0;f1)
+ N.(r,00;f1, ) + S(r,f1) + S(r, f2);

(ii) T(r,fy) < No(r,0;f)) + No(r,0;fy) + N(r,00; ;) + gﬁ(r, 00; fa) + %N(T, 0; fs)
+ N (r,00;fy, f1) + S(r, f1) + S(r, f2).

Lemma 3.6. [11] Let fy,fy € .F. Suppose fi, fy share (1,0) and (c0,0), and 2 # 0.
Then

(1) T(r,f1) < No(r,0;f) + No(r,0;f2) + 3N(r, 00; f1) + 2N(r, 00; f2) + 2N (1, 0; ;)
+ N(r,0;f2) + N.(r, 00: f1, o) + S(r f1) + S(r. )

(i) T(r,fy) < Na(r,0;f1) + No(r,0;f) + 2N (r, 00;f1) + 3N (1, 00; fy) + N(r, 0; )
+ 2N (r,0;f5) + N.(r,00;fo, f1) + S(r, f1) + S(r, )

Lemma 3.7. [13] Let £ be a L-function with degree d. Then
d
T(r,L) = —rlogr+ O(r).
7r

Lemma 3.8. [9] Let £ be an L-function. Then N(r,o00; L) = S(r,L).
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Lemma 3.9. [15] Let f € .#. Then m(r,oc0;f'/f) = S(r,f). Since, we can write

HO) f(r) f(r—1) I
(k)
m (T,OO; S ) = S(r,f).

7 08 oD T 2 T
Lemma 3.10. Suppose f € % and d,[f] is a linear differential polynomial of f.
Then

N(r,00;d,[f]) < N(r,00;f) + kN (r,o00;f) + S(r,f).

Proof. It is easy to see that, the poles of d,[f] occurs at the poles of f. Suppose,
2z, is a pole of f of order r, then z, is a pole of d,[f] of order at most r + k. Hence,

we have o
N(r,00;d,[f]) < N(r,o00;f) + kN(r,00;f) + S(r,f).

Thus the proof.

Lemma 3.11. Suppose f € % and d,[f] is a linear differential polynomial of f.
Then

T(r,d[f]) <T(r,f)+ kN (r, 00;f) + S(r, f),
N(r,0;d,[f]) < T(r,d[f]) = T(r,1/f) + N(r,0;f) + S(r,f),
N(r,0;d[f]) < N(r,0;f) + nN(r, f)+ S(rf).
Proof. From the Nevanlinna’s Fundamental Theorem-I, we have
N(r,0;d,[f]) = T(r,d.[f]) — m(r,0;d.[f]) + O(1). (3.2)

Also, we have
s f]

f

m(r,0;f) < m (r,oo; > +m(r,0; d[f])

this implies that
m(r,0;f) < m(r,0;d.[f]) + S(r,f),

which further implies that
—m(r,0;d:[f]) < —m(r,0;f) + S(r,f). (3.3)
Using (3.3) in (3.2), we get

N(r,0;d,[f])
N (r,0;d,|[f])

T(r,dg[f]) — m(r,0;f) + S(r,f)
T(r,d.[f]) = T(r,1/f) + N(r,0;f) + S(r,f). (3.4)

T,
T,

IA A
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Since,
T(r,d[f]) = m(r,oo; d,[f]) + N(r, 00; d,[f])

oo

m(r, 0o; f)+N o0; f) + kN (r, 00;f) + S(r,f)
T(r,f) + kN (r,00;f) + S(r,f). (3.5)

) m(r, 0o; f) + N(r, 0o; d,[f])

<
<

Substituting (3.5) in (3.4), we get

N(r,0;d.[f]) < T(r,f) + N(r,o0;f) — T(r,1/f) + N(r,0;f) + S(r,f)

<
< N(r,0;f) + kN (r, 00; f) + S(r, f). (3.6)

Thus the proof.
Lemma 3.12. Suppose f € ., q € N and d,[f] is a linear differential polynomial
of f. Then

k(k+1)

N, (r, 0; d,[f]) < (5 + 1) (q n g) N(r,0:f) + N(r, 00: f) + S(r,f).

Proof. We know that the number of zeros of a polynomial are less than the sum
of the number of zeros of the constituent monomials and hence

o7, 05 dy| <ZN (r, 0;
<Z Ny+i(r,0;f) +iN(r, 00;f)] + S(r,f)

< Z(q +i)N(r, 0;) + i iN(r, 00;f) + S(r,f)
- k(k+1)

K\ —
—> N(r,0:f) + =

5 N(r,00;f) + S(r,f).
Thus the proof.

Lemma 3.13. Suppose f € % and d,[f] is a linear differential polynomial of f.
Then

N <r,oo; dT[f]> < KkN(r,00:f) + S(r,f).



90 South FEast Asian J. of Mathematics and Mathematical Sciences

Proof. We know that,

doJf] = O
fo LT

I
o

%

If z, is a pole of f of order r, then z, is a pole of % of order 1 and a pole of fT" of

i)
f

order 2 and so on. Hence z, is a pole of of order k. Thus,

]V(naxdﬂﬂ>fgkﬁﬁﬂmﬁ)+5@ﬁ)

Thus the proof.

Lemma 3.14. Let f € .#. Let Fy = f"(f — 1)"d,[f], where n,m(> 0) are positive
integers. Then
(n+m+1—r)T(r,f) <T(r,Fy)+ S(r,f).

Proof. From Lemmas 3.1, 3.9, 3.13 and the Nevanlinna’s Fundamental Theorem
-I, we have

(n+m+D)T(r,f)=T(r, " (f = 1)"f) + S(r,f)

<T (r, CZ—I[:]) + S(r,f)
d,[f]
f

gT&fﬁ+T(n >+Smﬂ

gT@FQ+N(nmfﬁm)+m(nmf@ﬂ>+5mﬂ

< T(r,F1) + &N(r,00;f) + S(r, f).

Thus, (n+m+1—r)T(r,f) <T(r,Fy)+ S(r,f).
4. Proof of Theorems

4.1. Proof of Theorem 2.1.
Let,
Fi=f"(f — 1)™d,[f] and Ly =L"L—1)"d[L],

Fr = Fgl) and L= Egl),
F* 2F* L 2L
”Z(W‘ﬁ)‘(ﬁ—m_l)- 1)

From the hypothesis we have F* and £* share (1, ;) and also share (0o, k). We
now discuss the following two cases.
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Case 1. We assume that 2 # 0. Now we consider the following three subcases.
Subcase 1.1. Suppose that k1 > 2 and 0 < ko < 00, then using Lemmas 3.3, 3.4,
3.8, 3.11 and 3.14 we obtain
T(r,F*) < Ny(r, 0; F*) + No(r,0; L*) + N(r,00; F*) + N(r,00; L*) + N.(r, 00; F*, L*)
+ S(r,F*) 4+ S(r, L")
< T(r,F*) = T(r,F1) 4+ Nipo(r, 05 F1) + IN(r, 00; £1) + Niyo(r, 0; £y)
+ S(r,f)+ S(r, L).

This implies,

(n+m+1—r)T(r,f) < (+2)N(r,0;f) + mN(r,0;f) + N(r,0;f) + £N(r, oo; f)
+(I+2)N(r,0; L) +mN(r,0; L) + N(r,0; L)
+ kN (r,00; L) + S(r, ) + S(r, L). (4.2)

By similar calculations, we get

m4+m+1—r)T(r, L) < (I 4+2)N(r,0;L) + mN(r,0; L) + N(r,0; L)
+ kN (r,00; L) + (I + 2)N(r,0;f) + mN(r,0; f)
+ N(r,0;f) + kN (r,00;f) + S(r,f) + S(r,£).  (4.3)

Now, from combining the inequalities (4.2) and (4.3), we get

(n+m+1—r)T(rf)+T(r L) <2(l+2+m+ 1)[N(r,0;f) + N(r,0; £)]
+ S(r,f) + S(r, L),

which contradicts n > k + 2l +m + 5.

Subcase 1.2. Suppose k1 = 1 and ky = 0, then using Lemmas 3.3, 3.5, 3.8, 3.11
and 3.14 we obtain

33— _
T(r,F*) < No(r,0; F*) + No(r,0; L") + §N(r, 00; F*) 4+ N(r, 00; L")

_ 1—
+ N, (r,o0; F*, L") + QN(T, 0;F*) + S(r,F*) + S(r, L")
< T(r,F*) = T(r,F1) + Nipo(r,0;Fy) 4+ Nyyo(r,0; £1) + IN(r, 00; L;)
1
+ 5[N1+1(7”; 0;F1) + IN(r,00; F1)] 4+ S(r,f) + S(r, L),
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which implies that

(n+m+1—r)T(rf) < (I +2)N(r,0;f) + mN(r,0;f) + N(r,0;f) + N (r, 00; f)

+ (+2)N(r,0; L) + mN(r,0; £) + N(r,0; L) + kN (r,00; L)

5 DN, 0:6) + TN 0:6) + N(r,056) + K (r, 00 )
+ S(r,f) + S(r, L). (4.4)

By similar calculations, we get

(n+m+1—r)T(r,L) < (I +2)N(r,0;f) + mN(r,0;f) + N(r,0;f) + kN (r, o00; f)

(l+2) N(r,0; L) + mN(r,0; L) + N(r,0; L) + &N (r,00; L)
2([—1—1) (r,0; L) + N(rOE)—i—N(rOE)
+ kN (r,00; L) + S(r, )—I—S(r L). (4.5)

Now, by combining the inequalities (4.4) and (4.5), we get
(mn+m+1—=r)T(rf)+Tr L) <2(l4+2+m+1)[N(r,0;f) + N(r,0; L)]

+ (H_TlJrr;Jrl) [N(r,0;f) + N(r,0; L)]

+ S(r,f)+S(r, L),
which contradicts n > k + ‘E’H?’Qﬂ

Subcase 1.3. Suppose k1 = 0 and ko = 0, then using Lemmas 3.3, 3.6, 3.8, 3.11
and 3.14 we obtain

T(r,F*) < Ny(r,0; F*) + Nyo(r,0; L*) + 3N (r, 00; F*) + 2N(r, 00; L*) 4+ 2N (r, 0; F*)
+ N, (r,00; F*, L*) 4+ N(r,0; L*) + S(r,F*) + S(r, L*)
< T(r,F*) = T(r,F1) + Nipa(r,0; F1) + Nijo(r,0; £1) + IN(r, £y)
4+ 2Np41(r, 0; Fy) + IN(r, Fy) + Ny (r,0; £1) + IN(r, 00; £1)
+ S(r,Fy) + S(r, Ly),
which implies that,
(n+m+1—r)T(rf) < +2)N(r,0;f) + mN(r,0;f) + N(r,0;f) + kN (r, o00; f)
+ (I +2)N(r,0;£) + mN(r,0; £) + N(r,0; L) + kN (r,00; L)
+2(1 + 1)N(r,0;f) + 2mN(r,0;f) + 2N(r, 0; f) + 26N (r, 00; f)
+ (I +1)N(r,0;£) + mN(r,0; L) + N(r,0; L) + &N (r,00; L)
+ S(r,f) + S(r, L). (4.6)
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By similar calculations, we get

(n+m+1—r)T(r,L) < (I +2)N(r,0;f) +mN(r,0;f) + N(r,0;f) + kN (r, oo; f)
+ (I +2)N(r,0; £) + mN(r,0; L) + N(r,0; £) + &N(r, 00; L)
+2(1 +1)N(r,0; £) +2mN(r,0; L) + 2N (r,0; L)
+ 26N (r,00; L) + (I 4+ 1)N(r,0;f) +mN(r, 0;f) + N(r,0;f)

+ kN (r,00;f) + S(r,f) + S(r, L). (4.7)
Now, by combining the inequalities (4.6) and (4.7), we get

m+m+1—=r)[T(r,f)+T(r,L)] <2(l+2+m+1)[N(r,0;f) + N(r,0; L)]
+ (314 3m + 6)[N(r,0;f) + N(r,0; L)]
+ S(r,f) + S(r, L),

which contradicts n > x + 5l +4m + 11.
Case 2. We now assume that {2 = 0. Then

F 2R\ _ (L 2L
P —1) T\ 1)

By integrating twice the both sides of the above equality we get,

1 aq

FFe1 [ —1

+ as, (48)

where a;(# 0) and ag are constants. (4.8) obviously says that F*, £* share the
value 1 CM and hence they share the value 1 with weight x; = 2, and therefore,
n>k+2+m+5.

Now, let us discuss the three following subcases separately.

Subcase 2.1. If possible as # 0 and a; = ag, then from (4.8), we deduce

1 . G/QL*
F*—1  L£*—1

(4.9)
If ay = —1, then from (4.9), we obtain
F*Lr =1,

ie.,

[f(F = D)™ [f] V[ (£ = D)7 da[ L))V = 1,
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which implies
1

[£7(£ = 1)mdy[£]]0

Since F* and L£* share the poles, (4.10) is not possible.
If as # —1, then from (4.9), we have

[F(F = 1)"di[f)

(4.10)

1 as L* — 1 —
— = d N — L N(r,0;F*
F* (CLQ —+ 1>£* —1 ana so (T7 1 + CL27 ) <T )

From Nevanlinna’s Fundamental Theorem -II, we have

T(r, L1) < T(r,L*) + S(r, £*)

< N(r,0; L")+ N (7“, ;ﬁ*) + N(r,00; L*) + S(r, L*)

a2

N(r,0;F*) + N(r,0; L*) + S(r, L")

IN

Using Lemmas 3.3, 3.11 and 3.14, we have

(n+m+1—r)T(r,L) <+ 1)N(r,0;f) + mN(r,0;f) + N(r,0; f) + N (r, 00; f)
+ ({+1)N(r,0;£) + mN(r,0; £) + N(r,0; £) + kN (r,00; L)
+ S(r,f)+S(r, L)

Similarly, we have for T'(r,f)

(n+m+1—r)T(rf) <+ 1)N(r,0;f) + mN(r,0;f) + N(r,0;f) + N(r oo; f)
+ (I +1)N(r,0; L) +mN(r,0; L) + N(r,0; L) + kN (r,00; L)
+ S(r,f)+S(r, L)

Thus by combining the above two inequalities, we get
(n+m4+1—r){T(r,)+T(r, L)} < (2142m~+4){N(r,0;f)+N(r,0; L) }+S(r,f)+S(r, L)

which contradicts n > k + 21 +m + 5.
Subcase 2.2. Suppose ay # 0 and a; # ay. Then by (4.8), we get

F* = (a2 + DL — (a2 a1 + 1) and so N (r, Bl S ;ﬁ*) = N(r,0; L").
a1 L* + (a1 — az) as +1

Proceeding in a manner similar to subcase 2.1, we can arrive at a contradiction.
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Subcase 2.3. Let ap = 0 and a; # 0. Then from (4.8), we get

_£*+(11—1
= o

F* and LF = GlF* — (CLl — 1)

If a; # 1, it follows that,

_ —1 — _ —
N (7"7 “ ;F*) = N(r,0;£*) and N(r,1—ay;L") = N(r,0;F").

ay

Following an argument as in subcase 2.1, we obtain a contradiction. Thus a; = 1,
which implies F* = £*, and therefore,

(Ff"(f — )™, [f)D = (£"(£ — 1)™d,[£])D. (4.11)
Integrating the above equation for [ times, we get
(F(F = )™ d,[f]) = (£"(£ — 1)"dx[L£]) + b(2), (4.12)

where b(z) is a polynomial of degree atmost [ — 1.
Suppose b(z) # 0, then we get
fr(f — 1)™d[f] LML —1)"d.[L]
b(2) N b(2)

+1, (4.13)
1.€.,
Fq L4
1 =
bz) b))

By the Nevanlinna’s Fundamental Theorem -II and Lemma 3.14, we have

(4.14)

T(r,F1) <N (7", o0; %) +N (r, 0; %) + N (r, 0; %) + S(r,Fy)

(n+m+1—r)T(r,f) < N(r,0;f) + mN(r,0;f) + N(r,0;f) + kN (r, oo; )
+ N(r,0;£) +mN(r,0; L) + N(r,0; £) + &N (r, 00; L)
+ S(r,f)+ S(r, L). (4.15)

Similarly, we have
(n+m+1—r)T(r,f) <N 0;L) +mN(r,0; L) + N(r,0; L) + £N(r, 00; L)

+ N(r,0; f) + mN(r,0;f) + N(r,0;f) + ,%N(r, oo; f)
+ S(r,f)+ S(r, L). (4.16)
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combining inequalities (4.15) and (4.16), we get
(n+m+1—=r)[T(rf)+T(r,L)] < (2m +4)[N(r,0;f) + N(r,0; £)]
+ S(r,f) +S(r, L),

which contradicts n > k + 21 + m + 5. Therefore b(z) = 0. Hence from (4.12), we
have

(F(F = 1)"du[f]) = (£*(£ = 1)"d,[L]), (4.17)
which is the required conclusion. Further if x = 0, then from (4.17), we have
frrf — )™ = £ L —1)™ (4.18)

Let t = % We shall consider two subcases of subcase 2.3.

Subcase 2.3.1. If #(z) is a constant function, then by substitution of f = ¢£ in
(4.18), we obtain

I —mf ™ e (1)) = LML - m L™ 4 (1) (4.19)
substituting f = t£ in (4.19), we will have
LrrmAgntmtl ] g Lt ] 4 (1)L T — 1) = 0, (4.20)

which implies t¢ = 1, where d = GCD(n+m+1,n+m,n+m—1,...n+1).
Thus we get the conclusion f = t£, where t is a constant such that t% = 1.

Subcase 2.3.2. Suppose, t(z) is not a constant, then f and £ satisfy the algebraic
equation R(f, £) = 0, where

R(wy,wz) = wi™ (2)(wi(2) — )™ — wi ™ (2) (wa(2) — )™

This completes the proof of Theorem 2.1.

4.2. Proof of Corollary 2.1, Theorem 2.2 and Corollary 2.2.
Corollary 2.1, Theorem 2.2 and Corollary 2.2. can be proved easily in a similar
way as Theorem 2.1.

5. Conclusion

We have examined the uniqueness of differential polynomials of f and £, when
they share the values 1 with weight x; and oo with weight x. By fixing the values
a1 = 1 and as = oo and additionally considering the linear differential polynomial,
our results extend as well as reduce the weights of sharing ki, ks in the result of
Hao and Chen [3], as well as reduce the condition for n in their results [2].

Also, we can pose the following open questions.
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Open Questions:

1. What happens to Theorem 2.1 and Corollary 2.1, if we replace the linear
differential polynomial d[f] by a homogeneous and non-homogeneous differ-
ential polynomials H[f] as defined in [14], as well as by difference differential
polynomial P[f] as defined in [10]?

2. Can the condition for n in Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 be still
reduced?
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