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1. Introduction
Let C represent the complex plane, N represent the set of natural numbers,

W = N ∪ {0}, C = C ∪ {∞}, C = C\{0}.
We assume that the readers are well aware of the standard notations and def-

initions used in the Nevanlinna value distribution theory such as T (r, f), m(r, f),
N(r, f), N(r, f) etc. The reader can refer ([4], [15], [16]) for basics of Nevanlinna
theory.

Let F = {f(z)|f(z) is a non-constant meromorphic function in C} and let
G={g(z)|g(z) is a non-constant meromorphic function C with finitely many poles}.
For f1, f2 ∈ F and b ∈ C, if f1−b and f2−b have identical zeros taking into account
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the multiplicities then we say, f1(z) and f2(z) share b CM (counting multiplicities),
if multiplicities are not taken into account then we say f1(z) and f2(z) share b IM
(ignoring multiplicities).

In general for f ∈ F , m(r, f) denotes the proximity function of f, N(r, f) denotes
the counting function of poles of f(z), whose multiplicities are taken into account
(respectively N(r, f) denotes the reduced counting function when multiplicities are

ignored). N(r, b; f)
(
notation inter-changable withN

(
r, 1

f−b

))
denotes the counting

function of b-points of f(z), whose multiplicities are taken into account (respectively
N(r, b; f) denotes the reduced counting function when multiplicities are neglected).
T (r, f) represents the characteristic function of f. S(r, f) denotes any quantity
satisfying S(r, f) = o(T (r, f)) as r → ∞ outside a possible exceptional set of finite
linear measure. A meromorphic function η(z) is said to be a small function of f, if
T (r, η) = S(r, f).

Below we give some definitions which are required for our paper.

Definition 1.1. [5, 6] Let f1, f2 ∈ F and p ∈ W ∪ {∞}. For b ∈ C, we represent
by Ep(b; f1) the set of all zeros of f1 − b where a zero of multiplicity s is counted s
times if s ≤ p and p + 1 times if s > p. If Ep(b; f1) = Ep(b; f2), we say that f1, f2
share b with weight p.

Definition 1.2. [5] Let q ∈ W and f1 ∈ F , then we set Nq(r, b; f1) as the counting
function of b-points of f1, where any m multiplicity b-point of f1 is counted m times
if m ≤ q and q times if m > q.

Definition 1.3. [5] Suppose f1 and f2 share the value b IM. Then we set N∗(r, b; f1, f2)
as the reduced counting function of those b-points of f1 whose multiplicities differ
from the multiplicities of the corresponding b-points of f2.

In modern number theory, L-functions play a very important role. The value
distributions of the L-functions provides valuable insights into the algebraic struc-
ture that is not available through the use of the elementary algebraic techniques.
Specifically, the distribution of zeros of L-functions holds particular significance
for numerous multiplicative number theory problems. One illustration is the Rie-
mann hypothesis in the right half of the critical strip for a non-vanishing Riemann
zeta-function and its impact on the distribution of prime numbers.

One feature all L-functions have in common is that they can be described by
an Euler product. Therefore all L-function can be described as a product taken
over prime numbers. Taking into account unique prime factorization of integers
we can express L-functions as Dirichlet series. We may regard the well-known

Riemann zeta-function as the prototype, i.e., ζ(z) =
∑∞

n=1
1
nz =

∏
p

(
1− 1

pz

)−1

,
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where z = x+ iy, x > 1 and p stands for a prime integer and the product is taken
over all prime numbers.

Towards the end of twentieth century, in an effort to summarize the core prop-
erties of classical L-functions, Selberg [12] gave an axiomatic characterization of
what would be called general L-functions. A L-function L means a Selberg class
function with the Riemann zeta function ζ(z) =

∑∞
n=1

1
nz as the prototype and the

Selberg class S of L-function is defined as follows:

Definition 1.4. [12] The Selberg class S consists of the functions L satisfying the
following axioms:

1. (Dirichlet series) L(z) =
∑∞

n=1
a(n)
nz , absolutely convergent for σ > 1.

2. (Analytic continuation) There exists an integer m such that (z − 1)mL(z) is
an entire function of finite order.

3. (Functional equation) There exist an integer r ≥ 0, positive real numbers
Q, λj, complex numbers µj with Reµj ≥ 0 and ω with |ω| = 1, such that the
function Λ(z) defined by

Λ(z) = Qz

r∏
j=1

Γ(λjz + µj)L(z) = γ(z)L(z),

satisfies the functional equation Λ(z) = ωΛ(1−z). We would call the function
γ(z) the γ-factor.

4. (Ramanujan conjecture) For every ϵ > 0, a(n) = O(nϵ).

5. (Euler product) a(1) = 1, and logL(z) =
∑

n≥1
b(n)
nz , where b(n) = 0 unless n

is a prime power, and b(n) ≪ nθ for some θ < 1
2
.

By the comment on the order of a function, we can choose m in axiom (2) to
be the order of the pole of L at z = 1.

Since L-functions are analytically continued as meromorphic functions, we can
study the value distribution and uniqueness results for a L-function, similar to any
arbitrary meromorphic function using the Nevanlinna value distribution theory and
the fact that L-functions has the only pole at z = 1 helps us in this.

So, by utilizing this fact in 2017, Liu et. al [8] studied the uniqueness results of
a differential polynomial of a L-function with the same of a meromorphic function
sharing a non-zero finite value and obtained the following result.
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Theorem A. [8] Let f ∈ F and L be a L-function. Let n, l ∈ N such that n > 3l+6.
Suppose that [fn](l) and [Ln](l) share 1 CM, then f ≡ tL for a constant t satisfying
tn = 1.

In 2018, Hao and Chen [2] generalized the differential monomial of Liu et. al
[8], as well as reduced the sharing value from CM to IM and obtained the following
results.

Theorem B. [2] Let f ∈ G and L be a L-function. Let n,m, l ∈ N. Suppose that
[fn(f − 1)m](l) and [Ln(L − 1)m](l) share 1 IM. If n > 7l + 4m + 11, l ≥ 2, then
f ≡ L or fn(f − 1)m ≡ Ln(L − 1)m.

Theorem C. [2] Let f ∈ G and L be a L-function. Let n, l ∈ N. Suppose that
[fn](l) and [Ln](l) share 1 IM. If n > 7l+11, then f ≡ tL for a constant t satisfying
tn = 1.

Once again in 2018, Hao and Chen [3], studied the uniqueness result of a L-
function with an arbitrary meromorphic function as follows.

Theorem D. [3] Let L be a L-function and f ∈ G . Let α1, α2 ∈ C and κ1, κ2 ∈ N
satisfying κ1κ2 > 1. If Eκi

(αi,L) = Eκi
(αi, f), for i = 1, 2, then L ≡ f.

The main motivation to this paper are the following questions,

(i) whether we can reduce the condition for n in Theorem B and C?

(ii) whether we can reduce the weights of sharing κ1, κ2 in Theorem D?

(iii) whether a similar uniqueness result holds when we consider, an additional
linear differential polynomial along with the polynomial of L as defined below?

Definition 1.5. Let f ∈ F . Then we define its linear differential polynomial dκ[f]
as

dκ[f] = a0f + a1f
′ + a2f

′′ + · · ·+ aκf
(κ), (1.1)

where a0, a1, a2, ..., aκ−1 and aκ ̸= 0 are complex constants.

2. Main Results
As a positive answer to the above questions, we give the following results.

Theorem 2.1. Let L be a L-function and f ∈ G . Let F∗ = (fn(f − 1)mdκ[f])
(l)

and L∗ = (Ln(L − 1)mdκ[L])(l). Let a1 = 1, a2 = ∞ and κ1, κ2 ∈ W ∪ {∞}. If
Eκ1(a1,L∗) = Eκ1(a1,F

∗) and Eκ2(a2,L∗) = Eκ2(a2,F
∗), such that

(i) n > κ+ 2l +m+ 5, when κ1 ≥ 2 and 0 ≤ κ2 ≤ ∞ or,

(ii) n > κ+ 5l+3m+13
2

, when κ1 = 1 and κ2 = 0 or,
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(iii) n > κ+ 5l + 4m+ 11, when κ1 = 0 and κ2 = 0,

then we have fn(f − 1)mdκ[f] ≡ Ln(L − 1)mdκ[L]. Further, if κ = 0, then we have
one of the following conclusions

(i) f ≡ tL, for a constant t satisfying td = 1, where d = GCD(n + m + 1, n +
m,n+m− 1, ..., n+ 1).

(ii) f and L satisfy the algebraic equation R(f,L) = 0, where

R(ω1, ω2) = ωn+1
1 (z)(ω1(z)− 1)m − ωn+1

2 (z)(ω2(z)− 1)m.

Example. Let f = 1
z−1

+1 and L =
∞∑
n=1

1
nz +1. Then it is easy to see that f and L

share the values 1 and ∞ CM. Suppose l = 0, m = 0 and κ = 0, then again F∗ and
L∗ shares 1 and ∞ CM, but none of the conclusions of Theorem 2.1 holds, which
shows that the conditions given in the theorem are necessary, but not sufficient.

Corollary 2.1. Let L be a L-function and f ∈ G . Let F∗ = (fndκ[f])
(l) and

L∗ = (Lndκ[L])(l). Let a1 = 1, a2 = ∞ and κ1, κ2 ∈ W ∪ {∞}. If Eκ1(a1,L∗) =
Eκ1(a1,F

∗) and Eκ2(a2,L∗) = Eκ2(a2,F
∗), such that

(i) n > κ+ 2l + 5, when κ1 ≥ 2 and 0 ≤ κ2 ≤ ∞ or,

(ii) n > κ+ 5l+13
2

, when κ1 = 1 and κ2 = 0 or,

(iii) n > κ+ 5l + 11, when κ1 = 0 and κ2 = 0,

then we have fndκ[f] ≡ Lndκ[L]. Further, if κ = 0, then we have f ≡ sL, for a
constant s satisfying sn+1 = 1.

Theorem 2.2. Let L be a L-function and f ∈ G . Let F∗ = (fn(f − 1)m)(l) and
L∗ = (Ln(L− 1)m)(l). Let a1 = 1, a2 = ∞ and κ1, κ2 ∈ W ∪ {∞}. If Eκ1(a1,L∗) =
Eκ1(a1,F

∗) and Eκ2(a2,L∗) = Eκ2(a2,F
∗), such that

(i) n > 2l +m+ 4, when κ1 ≥ 2 and 0 ≤ κ2 ≤ ∞ or,

(ii) n > 5l+3m+9
2

, when κ1 = 1 and κ2 = 0 or,

(iii) n > κ+ 5l + 4m+ 7, when κ1 = 0 and κ2 = 0,

then we have one of the following conclusions

(i) f ≡ tL, for a constant t satisfying td = 1, where d = GCD(n +m,n +m −
1, n+m− 2, ..., n).
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(ii) f and L satisfy the algebraic equation R(f,L) = 0, where

R(ω1, ω2) = ωn
1 (z)(ω1(z)− 1)m − ωn

2 (z)(ω2(z)− 1)m.

Corollary 2.2. Let L be a L-function and f ∈ G . Let a1 = 1, a2 = ∞ and κ1, κ2 ∈
W ∪ {∞}. If Eκ1(a1, [Ln](l)) = Eκ1(a1, [f

n](l)) and Eκ2(a2, [Ln](l)) = Eκ2(a2[f
n](l)),

such that

(i) n > 2l + 4, when κ1 ≥ 2 and 0 ≤ κ2 ≤ ∞ or,

(ii) n > 5l+9
2

, when κ1 = 1 and κ2 = 0 or,

(iii) n > κ+ 5l + 7, when κ1 = 0 and κ2 = 0,

then we have one f ≡ tL, for a constant t satisfying tn = 1.

Remarks. By additionally considering that the differential polynomials of f and
L share ∞ with weight κ2 we have obtained Theorems 2.1, 2.2 and Corollaries
2.1, 2.2. We can see that Theorem 2.2 and Corollary 2.2 are improvements of
the Theorem B and C respectively, where as Theorem 2.1 and Corollary 2.1 are
generalization as well as improvements of Theorem D.

3. Lemmas
Here we provide all the lemmas which we will be using. Let F={f(z)|f(z) is a

non-constant meromorphic function in C}. For any f1, f2 ∈ F , let Ω be defined as:

Ω ≡
(
f ′′1
f ′1

− 2f ′1
f1 − 1

)
−
(
f ′′2
f ′2

− 2f ′2
f2 − 1

)
. (3.1)

Lemma 3.1. [15] Let f ∈ F and n ∈ N. Let Pn(f) = anf
n + an−1f

n−1 + · · ·+ a1f,
where aκ for κ = 1, 2, ..., n are meromorphic functions such that T (r, aκ) = S(r, f)
for κ = 1, 2, ..., n and aκ ̸≡ 0. Then

T (r,Pn(f)) = nT (r, f) + S(r, f).

Lemma 3.2. [17] Let f1, f2 ∈ F and a(z)(̸≡ 0,∞) be a small function of f1 and
f2. Suppose f1 and f2 share a(z) IM, then one of the following three cases holds:

(i)

T (r, f1) ≤ N2(r, 0; f1) +N2(r,∞; f1) +N2(r, 0; f2) +N2(r,∞; f2) + 2(N(r, 0; f1)

+N(r,∞; f1)) +N(r, 0; f2) +N(r,∞; f2) + S(r, f1) + S(r, f2),

and a similar inequality holds for T (r, f2),
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(ii) f1f2 ≡ 1,

(iii) f1 ≡ f2.

Lemma 3.3. [7] Let f ∈ F and κ, q ∈ N. Then

Nq(r, 0; f
(κ)) ≤ T (r, f(κ))− T (r, f) +Nκ+q(r, 0; f) + S(r, f),

and
Nq(r, 0; f

(κ)) ≤ Nκ+q(r, 0; f) + κN(r,∞; f) + S(r, f).

Lemma 3.4. [1] Let f1, f2 ∈ F . Suppose f1, f2 share (1, 2) and (∞, κ), where
0 ≤ κ ≤ ∞ and Ω ̸≡ 0. Then

T (r, f1) ≤ N2(r, 0; f1) +N2(r, 0; f2) +N(r,∞; f1) +N(r,∞; f2) +N∗(r,∞; f1, f2)

+ S(r, f1) + S(r, f2).

Lemma 3.5. [11] Let f1, f2 ∈ F . Suppose f1, f2 share (1, 1) and (∞, 0), and Ω ̸≡ 0.
Then

(i) T (r, f1) ≤ N2(r, 0; f1) +N2(r, 0; f2) +
3

2
N(r,∞; f1) +N(r,∞; f2) +

1

2
N(r, 0; f1)

+N∗(r,∞; f1, f2) + S(r, f1) + S(r, f2);

(ii) T (r, f2) ≤ N2(r, 0; f1) +N2(r, 0; f2) +N(r,∞; f1) +
3

2
N(r,∞; f2) +

1

2
N(r, 0; f2)

+N∗(r,∞; f2, f1) + S(r, f1) + S(r, f2).

Lemma 3.6. [11] Let f1, f2 ∈ F . Suppose f1, f2 share (1, 0) and (∞, 0), and Ω ̸≡ 0.
Then

(i) T (r, f1) ≤ N2(r, 0; f1) +N2(r, 0; f2) + 3N(r,∞; f1) + 2N(r,∞; f2) + 2N(r, 0; f1)

+N(r, 0; f2) +N∗(r,∞; f1, f2) + S(r, f1) + S(r, f2);

(ii) T (r, f2) ≤ N2(r, 0; f1) +N2(r, 0; f2) + 2N(r,∞; f1) + 3N(r,∞; f2) +N(r, 0; f1)

+ 2N(r, 0; f2) +N∗(r,∞; f2, f1) + S(r, f1) + S(r, f2).

Lemma 3.7. [13] Let L be a L-function with degree d. Then

T (r,L) = d

π
r log r +O(r).

Lemma 3.8. [9] Let L be an L-function. Then N(r,∞;L) = S(r,L).
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Lemma 3.9. [15] Let f ∈ F . Then m(r,∞; f ′/f) = S(r, f). Since, we can write
f(κ)

f
as f(κ)

f(κ−1) · f(κ−1)

f(κ−2) · · · f′

f
, we get

m

(
r,∞;

f(κ)

f

)
= S(r, f).

Lemma 3.10. Suppose f ∈ F and dκ[f] is a linear differential polynomial of f.
Then

N(r,∞; dκ[f]) ≤ N(r,∞; f) + κN(r,∞; f) + S(r, f).

Proof. It is easy to see that, the poles of dκ[f] occurs at the poles of f. Suppose,
z∗ is a pole of f of order r, then z∗ is a pole of dκ[f] of order at most r + κ. Hence,
we have

N(r,∞; dκ[f]) ≤ N(r,∞; f) + κN(r,∞; f) + S(r, f).

Thus the proof.

Lemma 3.11. Suppose f ∈ F and dκ[f] is a linear differential polynomial of f.
Then

T (r, dκ[f]) ≤ T (r, f) + κN(r,∞; f) + S(r, f),

N(r, 0; dκ[f]) ≤ T (r, dκ[f])− T (r, 1/f) +N(r, 0; f) + S(r, f),

N(r, 0; dκ[f]) ≤ N(r, 0; f) + κN(r, f) + S(r, f).

Proof. From the Nevanlinna’s Fundamental Theorem-I, we have

N(r, 0; dκ[f]) = T (r, dκ[f])−m(r, 0; dκ[f]) +O(1). (3.2)

Also, we have

m(r, 0; f) ≤ m

(
r,∞;

dκ[f]

f

)
+m (r, 0; dκ[f]) ,

this implies that
m(r, 0; f) ≤ m(r, 0; dκ[f]) + S(r, f),

which further implies that

−m(r, 0; dκ[f]) ≤ −m(r, 0; f) + S(r, f). (3.3)

Using (3.3) in (3.2), we get

N(r, 0; dκ[f]) ≤ T (r, dκ[f])−m(r, 0; f) + S(r, f)

N(r, 0; dκ[f]) ≤ T (r, dκ[f])− T (r, 1/f) +N(r, 0; f) + S(r, f). (3.4)
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Since,

T (r, dκ[f]) = m(r,∞; dκ[f]) +N(r,∞; dκ[f])

≤ m

(
r,∞;

dκ[f]

f

)
+m(r,∞; f) +N(r,∞; dκ[f])

≤ m(r,∞; f) +N(r,∞; f) + κN(r,∞; f) + S(r, f)

≤ T (r, f) + κN(r,∞; f) + S(r, f). (3.5)

Substituting (3.5) in (3.4), we get

N(r, 0; dκ[f]) ≤ T (r, f) + κN(r,∞; f)− T (r, 1/f) +N(r, 0; f) + S(r, f)

≤ N(r, 0; f) + κN(r,∞; f) + S(r, f). (3.6)

Thus the proof.

Lemma 3.12. Suppose f ∈ F , q ∈ N and dκ[f] is a linear differential polynomial
of f. Then

Nq(r, 0; dκ[f]) ≤ (κ+ 1)
(
q +

κ

2

)
N(r, 0; f) +

κ(κ+ 1)

2
N(r,∞; f) + S(r, f).

Proof. We know that the number of zeros of a polynomial are less than the sum
of the number of zeros of the constituent monomials and hence

Nq(r, 0; dκ[f]) ≤
κ∑

i=0

Nq(r, 0; f
(i))

≤
κ∑

i=0

[
Nq+i(r, 0; f) + iN(r,∞; f)

]
+ S(r, f)

≤
κ∑

i=0

(q + i)N(r, 0; f) +
κ∑

i=0

iN(r,∞; f) + S(r, f)

≤ (κ+ 1)
(
q +

κ

2

)
N(r, 0; f) +

κ(κ+ 1)

2
N(r,∞; f) + S(r, f).

Thus the proof.

Lemma 3.13. Suppose f ∈ F and dκ[f] is a linear differential polynomial of f.
Then

N

(
r,∞;

dκ[f]

f

)
≤ κN(r,∞; f) + S(r, f).
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Proof. We know that,
dκ[f]

f
=

κ∑
i=0

f(i)

f
.

If z∗ is a pole of f of order r, then z∗ is a pole of f′

f
of order 1 and a pole of f′′

f
of

order 2 and so on. Hence z∗ is a pole of f(κ)

f
of order κ. Thus,

N

(
r,∞;

dκ[f]

f

)
≤ κN(r,∞; f) + S(r, f).

Thus the proof.

Lemma 3.14. Let f ∈ F . Let F1 = fn(f − 1)mdκ[f], where n,m(≥ 0) are positive
integers. Then

(n+m+ 1− κ)T (r, f) ≤ T (r,F1) + S(r, f).

Proof. From Lemmas 3.1, 3.9, 3.13 and the Nevanlinna’s Fundamental Theorem
-I, we have

(n+m+ 1)T (r, f) = T (r, fn(f − 1)mf) + S(r, f)

≤ T

(
r,

F1f

dκ[f]

)
+ S(r, f)

≤ T (r,F1) + T

(
r,
dκ[f]

f

)
+ S(r, f)

≤ T (r,F1) +N

(
r,∞;

dκ[f]

f

)
+m

(
r,∞;

dκ[f]

f

)
+ S(r, f)

≤ T (r,F1) + κN(r,∞; f) + S(r, f).

Thus, (n+m+ 1− κ)T (r, f) ≤ T (r,F1) + S(r, f).

4. Proof of Theorems

4.1. Proof of Theorem 2.1.
Let,

F1 = fn(f − 1)mdκ[f] and L1 = Ln(L − 1)mdκ[L],

F∗ = F
(l)
1 and L∗ = L(l)

1 ,

Ω =

(
F∗′′

F∗′ −
2F∗′

F∗ − 1

)
−

(
L∗′′

L∗′ −
2L∗′

L∗ − 1

)
. (4.1)

From the hypothesis we have F∗ and L∗ share (1, κ1) and also share (∞, κ2). We
now discuss the following two cases.
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Case 1. We assume that Ω ̸≡ 0. Now we consider the following three subcases.

Subcase 1.1. Suppose that κ1 ≥ 2 and 0 ≤ κ2 ≤ ∞, then using Lemmas 3.3, 3.4,
3.8, 3.11 and 3.14 we obtain

T (r,F∗) ≤ N2(r, 0;F
∗) +N2(r, 0;L∗) +N(r,∞;F∗) +N(r,∞;L∗) +N∗(r,∞;F∗,L∗)

+ S(r,F∗) + S(r,L∗)

≤ T (r,F∗)− T (r,F1) +Nl+2(r, 0;F1) + lN(r,∞;L1) +Nl+2(r, 0;L1)

+ S(r, f) + S(r,L).

This implies,

(n+m+ 1− κ)T (r, f) ≤ (l + 2)N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ (l + 2)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L)
+ κN(r,∞;L) + S(r, f) + S(r,L). (4.2)

By similar calculations, we get

(n+m+ 1− κ)T (r,L) ≤ (l + 2)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L)
+ κN(r,∞;L) + (l + 2)N(r, 0; f) +mN(r, 0; f)

+N(r, 0; f) + κN(r,∞; f) + S(r, f) + S(r,L). (4.3)

Now, from combining the inequalities (4.2) and (4.3), we get

(n+m+ 1− κ)[T (r, f) + T (r,L)] ≤ 2(l + 2 +m+ 1)[N(r, 0; f) +N(r, 0;L)]
+ S(r, f) + S(r,L),

which contradicts n > κ+ 2l +m+ 5.

Subcase 1.2. Suppose κ1 = 1 and κ2 = 0, then using Lemmas 3.3, 3.5, 3.8, 3.11
and 3.14 we obtain

T (r,F∗) ≤ N2(r, 0;F
∗) +N2(r, 0;L∗) +

3

2
N(r,∞;F∗) +N(r,∞;L∗)

+N∗(r,∞;F∗,L∗) +
1

2
N(r, 0;F∗) + S(r,F∗) + S(r,L∗)

≤ T (r,F∗)− T (r,F1) +Nl+2(r, 0;F1) +Nl+2(r, 0;L1) + lN(r,∞;L1)

+
1

2
[Nl+1(r, 0;F1) + lN(r,∞;F1)] + S(r, f) + S(r,L),
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which implies that

(n+m+ 1− κ)T (r,f) ≤ (l + 2)N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ (l + 2)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)

+
1

2
(l + 1)N(r, 0; f) +

m

2
N(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ S(r, f) + S(r,L). (4.4)

By similar calculations, we get

(n+m+ 1− κ)T (r,L) ≤ (l + 2)N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ (l + 2)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)

+
1

2
(l + 1)N(r, 0;L) + m

2
N(r, 0;L) +N(r, 0;L)

+ κN(r,∞;L) + S(r, f) + S(r,L). (4.5)

Now, by combining the inequalities (4.4) and (4.5), we get

(n+m+ 1− κ)[T (r, f) + T (r,L)] ≤ 2(l + 2 +m+ 1)[N(r, 0; f) +N(r, 0;L)]

+

(
l + 1

2
+

m

2
+ 1

)
[N(r, 0; f) +N(r, 0;L)]

+ S(r, f) + S(r,L),

which contradicts n > κ+ 5l+3m+13
2

.

Subcase 1.3. Suppose κ1 = 0 and κ2 = 0, then using Lemmas 3.3, 3.6, 3.8, 3.11
and 3.14 we obtain

T (r,F∗) ≤ N2(r, 0;F
∗) +N2(r, 0;L∗) + 3N(r,∞;F∗) + 2N(r,∞;L∗) + 2N(r, 0;F∗)

+N∗(r,∞;F∗,L∗) +N(r, 0;L∗) + S(r,F∗) + S(r,L∗)

≤ T (r,F∗)− T (r,F1) +Nl+2(r, 0;F1) +Nl+2(r, 0;L1) + lN(r,L1)

+ 2Nl+1(r, 0;F1) + lN(r,F1) +Nl+1(r, 0;L1) + lN(r,∞;L1)

+ S(r,F1) + S(r,L1),

which implies that,

(n+m+ 1− κ)T (r,f) ≤ (l + 2)N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ (l + 2)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)
+ 2(l + 1)N(r, 0; f) + 2mN(r, 0; f) + 2N(r, 0; f) + 2κN(r,∞; f)

+ (l + 1)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)
+ S(r, f) + S(r,L). (4.6)
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By similar calculations, we get

(n+m+ 1− κ)T (r,L) ≤ (l + 2)N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ (l + 2)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)
+ 2(l + 1)N(r, 0;L) + 2mN(r, 0;L) + 2N(r, 0;L)
+ 2κN(r,∞;L) + (l + 1)N(r, 0; f) +mN(r, 0; f) +N(r, 0; f)

+ κN(r,∞; f) + S(r, f) + S(r,L). (4.7)

Now, by combining the inequalities (4.6) and (4.7), we get

(n+m+ 1− κ)[T (r, f) + T (r,L)] ≤ 2(l + 2 +m+ 1)[N(r, 0; f) +N(r, 0;L)]
+ (3l + 3m+ 6)[N(r, 0; f) +N(r, 0;L)]
+ S(r, f) + S(r,L),

which contradicts n > κ+ 5l + 4m+ 11.

Case 2. We now assume that Ω ≡ 0. Then(
F∗′′

F∗′ −
2F∗′

F∗ − 1

)
≡

(
L∗′′

L∗′ −
2L∗′

L∗ − 1

)
.

By integrating twice the both sides of the above equality we get,

1

F∗ − 1
=

a1
L∗ − 1

+ a2, (4.8)

where a1(̸= 0) and a2 are constants. (4.8) obviously says that F∗, L∗ share the
value 1 CM and hence they share the value 1 with weight κ1 = 2, and therefore,
n > κ+ 2l +m+ 5.
Now, let us discuss the three following subcases separately.

Subcase 2.1. If possible a2 ̸= 0 and a1 = a2, then from (4.8), we deduce

1

F∗ − 1
=

a2L∗

L∗ − 1
(4.9)

If a2 = −1, then from (4.9), we obtain

F∗L∗ = 1,

i.e.,
[fn(f − 1)mdκ[f]]

(l)[Ln(L − 1)mdκ[L]](l) ≡ 1,
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which implies

[fn(f − 1)mdκ[f]]
(l) ≡ 1

[Ln(L − 1)mdκ[L]](l)
. (4.10)

Since F∗ and L∗ share the poles, (4.10) is not possible.
If a2 ̸= −1, then from (4.9), we have

1

F∗ =
a2L∗

(a2 + 1)L∗ − 1
and so N

(
r,

1

1 + a2
;L∗

)
= N(r, 0;F∗).

From Nevanlinna’s Fundamental Theorem -II, we have

T (r,L1) ≤ T (r,L∗) + S(r,L∗)

≤ N(r, 0;L∗) +N

(
r,

1

1 + a2
;L∗

)
+N(r,∞;L∗) + S(r,L∗)

≤ N(r, 0;F∗) +N(r, 0;L∗) + S(r,L∗)

Using Lemmas 3.3, 3.11 and 3.14, we have

(n+m+ 1− κ)T (r,L) ≤ (l + 1)N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ (l + 1)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)
+ S(r, f) + S(r,L)

Similarly, we have for T (r, f)

(n+m+ 1− κ)T (r,f) ≤ (l + 1)N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ (l + 1)N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)
+ S(r, f) + S(r,L)

Thus by combining the above two inequalities, we get

(n+m+1−κ){T (r, f)+T (r,L)} ≤ (2l+2m+4){N(r, 0; f)+N(r, 0;L)}+S(r, f)+S(r,L)

which contradicts n > κ+ 2l +m+ 5.

Subcase 2.2. Suppose a2 ̸= 0 and a1 ̸= a2. Then by (4.8), we get

F∗ =
(a2 + 1)L∗ − (a2 − a1 + 1)

a1L∗ + (a1 − a2)
and so N

(
r,
a2 − a1 + 1

a2 + 1
;L∗

)
= N(r, 0;L∗).

Proceeding in a manner similar to subcase 2.1, we can arrive at a contradiction.
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Subcase 2.3. Let a2 = 0 and a1 ̸= 0. Then from (4.8), we get

F∗ =
L∗ + a1 − 1

a1
and L∗ = a1F

∗ − (a1 − 1).

If a1 ̸= 1, it follows that,

N

(
r,
a1 − 1

a1
;F∗

)
= N(r, 0;L∗) and N(r, 1− a1;L∗) = N(r, 0;F∗).

Following an argument as in subcase 2.1, we obtain a contradiction. Thus a1 = 1,
which implies F∗ = L∗, and therefore,

(fn(f − 1)mdκ[f])
(l) = (Ln(L − 1)mdκ[L])(l). (4.11)

Integrating the above equation for l times, we get

(fn(f − 1)mdκ[f]) = (Ln(L − 1)mdκ[L]) + b(z), (4.12)

where b(z) is a polynomial of degree atmost l − 1.
Suppose b(z) ̸= 0, then we get

fn(f − 1)mdκ[f]

b(z)
=

Ln(L − 1)mdκ[L]
b(z)

+ 1, (4.13)

i.e.,
F1

b(z)
=

L1

b(z)
+ 1. (4.14)

By the Nevanlinna’s Fundamental Theorem -II and Lemma 3.14, we have

T (r,F1) ≤ N

(
r,∞;

F1

b(z)

)
+N

(
r, 0;

F1

b(z)

)
+N

(
r, 0;

L1

b(z)

)
+ S(r,F1)

(n+m+ 1− κ)T (r, f) ≤ N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)
+ S(r, f) + S(r,L). (4.15)

Similarly, we have

(n+m+ 1− κ)T (r, f) ≤ N(r, 0;L) +mN(r, 0;L) +N(r, 0;L) + κN(r,∞;L)
+N(r, 0; f) +mN(r, 0; f) +N(r, 0; f) + κN(r,∞; f)

+ S(r, f) + S(r,L). (4.16)
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combining inequalities (4.15) and (4.16), we get

(n+m+ 1− κ)[T (r, f) + T (r,L)] ≤ (2m+ 4)[N(r, 0; f) +N(r, 0;L)]
+ S(r, f) + S(r,L),

which contradicts n > κ + 2l +m + 5. Therefore b(z) = 0. Hence from (4.12), we
have

(fn(f − 1)mdκ[f]) = (Ln(L − 1)mdκ[L]), (4.17)

which is the required conclusion. Further if κ = 0, then from (4.17), we have

fn+1(f − 1)m = Ln+1(L − 1)m (4.18)

Let t = f
L . We shall consider two subcases of subcase 2.3.

Subcase 2.3.1. If t(z) is a constant function, then by substitution of f = tL in
(4.18), we obtain

fn+1[fm −mfm−1 + · · ·+ (−1)m] = Ln+1[Lm −mLm−1 + · · ·+ (−1)m] (4.19)

substituting f = tL in (4.19), we will have

Ln+m+1[tn+m+1 − 1]−mLn+m[tn+m − 1] + · · ·+ (−1)mLn+1[tn+1 − 1] = 0, (4.20)

which implies td = 1, where d = GCD(n+m+ 1, n+m,n+m− 1, ..., n+ 1).
Thus we get the conclusion f ≡ tL, where t is a constant such that td = 1.

Subcase 2.3.2. Suppose, t(z) is not a constant, then f and L satisfy the algebraic
equation R(f,L) = 0, where

R(ω1, ω2) = ωn+1
1 (z)(ω1(z)− 1)m − ωn+1

2 (z)(ω2(z)− 1)m.

This completes the proof of Theorem 2.1.

4.2. Proof of Corollary 2.1, Theorem 2.2 and Corollary 2.2.
Corollary 2.1, Theorem 2.2 and Corollary 2.2. can be proved easily in a similar

way as Theorem 2.1.

5. Conclusion
We have examined the uniqueness of differential polynomials of f and L, when

they share the values 1 with weight κ1 and ∞ with weight κ2. By fixing the values
α1 = 1 and α2 = ∞ and additionally considering the linear differential polynomial,
our results extend as well as reduce the weights of sharing κ1, κ2 in the result of
Hao and Chen [3], as well as reduce the condition for n in their results [2].

Also, we can pose the following open questions.
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Open Questions:

1. What happens to Theorem 2.1 and Corollary 2.1, if we replace the linear
differential polynomial dκ[f] by a homogeneous and non-homogeneous differ-
ential polynomials H[f] as defined in [14], as well as by difference differential
polynomial P [f] as defined in [10]?

2. Can the condition for n in Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 be still
reduced?
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